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TRANSLITERATING URDU TO ROMAN URDU 

USING NEURAL NETWORK 

ABSTRACT 

Transliteration is a process of converting a word from the alphabet of one lan-

guage to another language. Previously used techniques are related to statistical, 

phrase level and rule-based approaches but Neural Machine Translation (NMT) 

has replaced it because of its heterogeneous, scalable and dynamic structure. 

NMT is used for rich resource languages e.g. German, Vietnam, Chinese and also 

performing well for poor resource languages like Myanmar, Hindi, and Roman-

Urdu. Urdu is a low resource language and there is no significant work done to 

transliterate using NMT models. In this paper, we are working on Urdu to Roman-

Urdu transliteration using sequence-to-sequence and attention-based models. 

This model uses the Encoder-Decoder architecture that takes one language as in-

put (source) and decoder transforms it to desire output (target). Its results are phe-

nomenal for rich resource languages, providing context aware and scalable solu-

tions. In the field of language transliteration, Long Short-Term Memory (LSTM) 

and Bi-directional models are commonly employed to effectively deal with long-

term dependencies. To handle unseen data, a combination of Byte Pair Encoding 

(BPE) and subword techniques is utilized, employing a hybrid approach that in-

corporates both word and character level embeddings. In order to evaluate the 

performance of the transliteration system, experiments are conducted on a parallel 

corpus consisting of 60k samples, which were generated from scratch. The system 

undergoes extensive testing to fine-tune the hyperparameters, ultimately achiev-

ing state-of-the-art results measured by the BLEU score on both the training and 

testing datasets. Additionally, the NMT model provides scalable, robust, context 

aware structure and can handle out-of-vocabulary (OOV) words. 

 

Keywords: Neural Network, Urdu Transliteration, Translation  
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NEURAL AĞ KULLANARAK URDU'DAN RÖMENCE UR-

DU'YA DÖNÜŞTÜRME 

ÖZET  

Harf çevirisi, bir kelimeyi bir dilin alfabesinden başka bir dile dönüştürme 

işlemidir. Daha önce kullanılan teknikler istatistiksel, kelime öbeği düzeyinde 

ve kural tabanlı yaklaşımlarla ilgiliyken, heterojen, ölçeklenebilir ve dinamik 

yapısı nedeniyle Nöral Makine Çevirisi (Neural Machine Translation) onun 

yerini almıştır. NMT, örneğin zengin kaynak dilleri için kullanılır. Almanca, 

Vietnam, Çince ve ayrıca Myanmar, Hintçe ve Roman-Urduca gibi zayıf 

kaynak dilleri için iyi performans gösteriyor. Urduca düşük kaynaklı bir dildir 

ve NMT modellerini kullanarak transliterasyon yapmak için yapılmış önemli 

bir çalışma yoktur. Bu yazıda, diziden diziye ve dikkat tabanlı modeller kulla-

narak Urduca'dan Roman-Urduca harf çevirisi üzerinde çalışıyoruz. Bu model, 

bir dili girdi (kaynak) olarak alan Kodlayıcı-Kod Çözücü mimarisini kullanır 

ve kod çözücü bunu istenen çıktıya (hedef) dönüştürür. Bağlama duyarlı ve 

ölçeklenebilir çözümler sağlayan sonuçları, zengin kaynak dilleri için 

olağanüstü. Dil harf çevirisi alanında, Uzun Kısa Süreli Bellek (Long Short-

Term Memory) ve Çift yönlü modeller, uzun vadeli bağımlılıklarla etkili bir 

şekilde başa çıkmak için yaygın olarak kullanılır. Görünmeyen verileri işlemek 

için, Bayt Çifti Kodlama (Byte Pair Encoding) ve alt sözcük tekniklerinin bir 

kombinasyonu kullanılır ve hem sözcük hem de karakter düzeyi katıştırmalarını 

içeren hibrit bir yaklaşım kullanılır. Harf çevirisi sisteminin performansını 

değerlendirmek için sıfırdan oluşturulmuş 60 bin örnekten oluşan paralel bir 

derlem üzerinde deneyler yapılmıştır. Sistem, hiperparametrelerde ince ayar 

yapmak için kapsamlı testlere tabi tutulur ve sonuçta hem eğitim hem de test 

veri kümelerinde BLEU (İki Dilli Değerlendirme Öğrencisi) puanıyla ölçülen 

son teknoloji ürünü sonuçlara ulaşır. Ek olarak, NMT modeli ölçeklenebilir, 

sağlam, bağlama duyarlı bir yapı sağlar ve sözcük dağarcığı dışındaki (kelime 

dağarcığı dışında) sözcükleri işleyebilir. 

Anahtar Kelimeler: Sinir Ağı, Urdu Transliterasyonu, Çeviri 
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CHAPTER 1 

1.  INTRODUCTION 

Language transliteration is a type of conversion from one script to an-

other script using letters. Transliteration has high importance and it’s being 

used in Greek, Latin Urdu, Hindi and Arabic languages (Ahmed, 2009). The 

major challenges of transliteration are to distinguish the syntax, semantics and 

morphology of the languages (Kyunghyun, et al., 2014) (Durrani, Sajjad, 

Fraser, & Schmid, 2010) (Gupta, Joshi, & Mathur, 2013). In the past, Statisti-

cal Machine Translation (Lagarda, Alabau, Casacuberta, Silva, & Diaz-de-

Liano, 2009) and rule based techniques were commonly employed for lan-

guage transliteration. However, these techniques have been suspended as they 

yielded low-performance results (Luong & Manning, Achieving open 

vocabulary neural machine translation with hybrid word-character models, 

2016). Vocabulary size and unknown words handling are the major issues of 

these models. Similarly, for transliteration, rule based (Ahmed, 2009) (Gupta, 

Joshi, & Mathur, 2013) sound based, script based, and diacritics-based han-

dlings were performed but these approaches are not able to handle long-term 

dependencies and semantics (Bahdanau, Cho, & Bengio, Neural machine 

translation by jointly learning to align and translate., 2015). With this evidence 

and to the best of our knowledge, at present, no significant work has been done 

for transliteration of Urdu to Roman Urdu using Neural Networks. 

NMT is an advanced architecture that is emerging and now being used 

in language transliteration (Cho, Merriënboer, Bahdanau, & Bengio, 2014). It 
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uses encoder-decoder architecture for language transliteration. Its results are 

phenomenal for rich resource languages, providing context aware and scalable 

solutions (Luong, Pham, & Manning, 2015). Hence, this technique being used 

for low resource languages i.e. Arabic, Hindi etc., and it provides promising 

results (Alam & Hussain, 2017) (Durrani, Sajjad, Fraser, & Schmid, 2010). 

Urdu is mainly derived from Arabic and Persian in terms of vocabulary and 

has a close syntactic structure with Hindi, which motivated us to perform this 

work on Urdu language (Saini & Sahula, 2018). In this paper we used the se-

quence to sequence (RNN) model for model training. The input (Urdu) se-

quence of variable length is passed as input, which is converted to fixed length 

vector and then at decoder level, it converts the Roman-Urdu text into vector 

form and uses the encoder’s last hidden layer output to initialize weights. Both 

layers results are passed to the projection matrix to generate the results. We 

used the tensor flow NMT1 model for language transliteration. The NMT 

model can handle the word alignments with the help of projection matrix (aka 

2D alignment matrix) that maps the target word correctly and it provides one-

to-Many and Many-to-one words alignment. We used the Long Short-Term 

Memory (LSTM) based cells that can handle the long term dependency and 

resolve gradient disappearing problem (Hochreiter & Schmidhuber, 1997) 

(Luong & Manning, Achieving open vocabulary neural machine translation 

with hybrid word-character models, 2016). The other used approach is the at-

tention-based model, which adds direct connection between source and target 

words. Furthermore, this tensor flow NMT model can handle the out of vocab-

ulary (OOV) words by applying sub-word (Sennrich, Haddow, & Birch, 2015) 

and Byte Pair Encoding (BPE) (Kirchhoff, 2018) technique to it, which is a 

powerful feature of this model. 

Here, it is important to mention that we are using sentence level trans-

literation to transliterate the sentence based on its context. For example 

 – (آم) common can be written as “aam” whereas same word is used for/)عام)

mango. Therefore, context awareness is required before transliteration. Length 

penalty affects the NMT model therefore we used an attention-based model 

that doesn’t attempt to encode the whole input sequence in one go. On the other 
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hand, it chooses the set of input vectors that are relevant for transliteration with 

the help of context vector. Therefore, longer length sentences don’t affect the 

model performance (Bahdanau, Cho, & Bengio, Neural machine translation by 

jointly learning to align and translate., 2015). Here we are using attention-

based models with LSTM cells, hence it can handle long term dependencies 

issues (Hochreiter & Schmidhuber, 1997). Lastly for unknown words, it gen-

erates the relevant subwords based on the context of previous words. Another 

important reason for selecting this sentence level transliteration is that it can 

handle word alignment issues (Bahdanau, Cho, & Bengio, Neural machine 

translation by jointly learning to align and translate., 2015). For example, Is-

lamabad is one word in Roman-Urdu whereas in Urdu آباد اسالم are two words. 

It can handle these words in an efficient way. In absence of an automated pro-

cess for Urdu to Roman-Urdu transliteration, this research has high importance 

to generate Roman-Urdu among multilingual sites due to following factors. A 

medium is required for written communication between Urdu and Hindi speak-

ers, as both the languages are almost same but different scripts. Latin script 

has more preference and is widely used in social media conversations like Fa-

cebook, Twitter, etc., among the speakers of the world. This work includes the 

development of an open source parallel-corpora for Urdu to Roman-Urdu with 

extensive data cleaning, which can be seen in Section 3.2. NMT and attention-

based models are discussed in Section 3, which is used for the first time to 

transliterate from Urdu to Roman-Urdu. Out of vocabulary (OOV) words are 

handled smartly as can be seen in Section 3.6. Extensive hyper-parameter tun-

ing is performed to achieve state of the art results, claimed in Section 4 and it 

includes the result and conclusion part as well. 

 

 

 

 

 

 

 

 

 

 

 
1 Tensor flow official code https://github.com/tensorflow/nmt
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CHAPTER 2 

2. MOTIVATION AND RELATED WORK 

Urdu is a morphologically rich language, derived mainly from Persian 

and Arabic. Urdu speaking users do not differentiate between multiple letters 

of Urdu i.e. ‘ع’ AIn and ‘ا’ alif in transliteration due to same pronunciation of 

these letters in words (Akram & Hussain, Improving Urdu Recognition Using 

Character-Based Artistic Features of Nastalique Calligraphy, 2019), therefore 

Soundex algorithm can be used to handle these cases (Rajkovic & Jankovic, 

2007). Another approach is Nastaliq2 which is used in OCR for features recog-

nition. In this approach, characters are replaced with RASM classes3 that are 

used for sequence character recognition (Akram, Naseer, & Hussain, Assas-

Band, an affix exception-list based Urdu stemmer, 2009). Some researchers 

used POS tagging and stemming approaches for language transliteration, but 

POS tagging doesn’t differentiate well when we have more than one class 

(Abbas, 2014). Statistical Machine Translation (SMT) model is another ap-

proach used for transliteration, but it doesn’t provide a track of missing words 

and doesn’t support word alignment in different languages (Brown, Pietra, 

Pietra, & Mercer, 1993). However, these issues are partially solved using nor-

malized-attention probabilities over the entire sentence to calculate the SMT 

reordering score. Brahmi-Net is an online platform that provides transliteration 

of Indian languages pairs including Urdu (Kunchukuttan, Puduppully, & 

Bhattacharyya, Brahmi-Net: A transliteration and script conversion system for 

languages of the Indian subcontinent, 2015). They used language scripts 
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(Unicode scripts) and ITRANS for language translation/transliteration at word 

level. SMT based models are passed to 13 languages and results are evaluated 

using accuracy metric. IJunoon is another site that is using a rule-based ap-

proach for language transliteration. 

On the contrary, Neural Networks are widely used for language trans-

literation due to its diverse set of applications. Neural Machine Translation 

(NMT) uses LSTM based cells to avoid gradient disappearing issue 

(Kalchbrenner & Blunsom, 2013). The model is plotted to vector illustration 

using Word2Vec Toolset (Mikolov, Chen, Corrado, & Dean, 2013). This tech-

nique is applied to transform Roman-Urdu to Urdu transliteration using Recur-

rent Neural Network (RNN), which is related to our work (Alam & Hussain, 

2017). Some researchers used this technique for Hindi transliteration, which is 

similar to Urdu Language. A variety of techniques have been used for un-

known words handling (Kirchhoff, 2018). Some of those techniques include 

Word Penalty (WP) and another one is Continuous Space Language Model 

(CSLM) (Schwenk, 2007). In addition, NMT requires a huge amount of time 

for training and testing, especially when dealing with rare words. Therefore, 

Google Neural Machine Translation Model (GNMT) can be used to handle 

those issues (Wu, 2016). It directly connects the bottom layer of the decoder 

with the top layer of the encoder network to enable parallelism. They used low 

precision arithmetic for faster computation during the inference stage. With 

the help of subword units, they establish a good connection between characters 

and words during the decoding phase. GNMT uses residual connection which 

improves the gradient flow and allows training deep encoder and decoder net-

works. Another paper used an attention-based model for English to Persian 

translation (Mahsuli & Safabakhsh, 2017). They used the encoder vectors as 

initial weights. Similarly, the same attention-based model is used to translate 

English to German (Luong & Manning, Stanford neural machine translation 

systems for spoken language domains, 2015). 

The NMT model can be trained using word level and character level 

approach. The author uses the NMT character level approach (bi-directional) 

for different languages during transliteration (Bahdanau, Cho, & Bengio, 
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Neural machine translation by jointly learning to align and translate, 2014). 

Some researchers used Bi-LSTM models with word and phrase-based models 

. In the NMT (Sennrich, Haddow, & Birch, 2015) model, one to many align-

ments can exist which can be handled by using Bi-directional Joint Model 

(BJM) (Yao & Huang, 2016). Now a days, multilingual networks are also used 

for better results. This paper consisted of a multilingual and bilingual compar-

ison of model performance (Kunchukuttan, Khapra, Singh, & Bhattacharyya, 

2018). Orthographically similar languages are passed as input and then identi-

fied the common features for language transliteration. Moreover, zero shot 

transliteration (unknown words handling) outperform the bilingual model be-

cause the model generalized well on unknown words. 

Another popular approach is segmentation approach for unknown words like 

out of vocabulary. For each out of vocabulary word, average fact wise evi-

dence (PMI) is conceded with the surrounding material from the sentence. 

Other used approaches are graph based re-ranking model (Kirchhoff, 2018) 

and document context level model (DCLM) (Ji, Cohn, Kong, Dyer, & 

Eisenstein, 2015), which were tested on different with English language. Con-

tinuous Bag of Words (CBOW) and Skip Gram models can also be used for 

unknown words (Mikolov, Chen, Corrado, & Dean, 2013). Hybrid model is 

another approach for unknown words, and it uses word and character level 

embeddings to handle rare words (Wang Ling, 2015). Beam search is a com-

monly used technique to address penalty coverage issues in language genera-

tion tasks. It encourages the generation of output sentences that are likely to 

cover all words in the source sentences. 

Hybrid-based approaches play a significant role in handling complex 

languages, and they have shown promising results compared to single network 

models. In these approaches, Urdu is first taken as input and converted into a 

Finite State Model (FSM) to handle diacritics (Malik, Boitet, & Bhattcharyya, 

2008). Another technique is the Sequential RNN (SRNN) model, which com-

bines a Feedforward Neural Network (FNN) with an RNN (Oualil & Klakow., 

2017) and aspect-based Opinion Target Expression (OTE) that is used to iden-

tify the polarity of the embedding words. Neural networks are being used in a 
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variety of applications like video semantics understanding (Pan, 2016), mal-

ware detection (Stokes & W., 2017) and language translation. 

Sequence to sequence models is widely used for rich source languages 

i.e. English, Dutch, Chinese and its results are phenomenal. Therefore, this 

approach is also used for some low resource languages i.e. Hindi, Arabic 

(Malik A. , 2009) etc. The rule based/dictionary-based mapping only works 

well for seen dataset but can’t handle the composite and unseen/rare words 

(Ahmed, 2009). The results of the rule-based approach are discussed in “Re-

sults section” where we can see that model performance is not so good for rare 

and unknown words. To the best of our knowledge till date there is no signifi-

cant work done to apply sequence to sequence model for Urdu to Roman-Urdu 

transliteration (Alam & Hussain, 2017). Therefore, sequence to sequence and 

attention based models applied on Urdu language which addresses the issues 

of data variations, long term dependencies, gradient vanishing, and OOV 

words in an efficient way (Luong & Manning, Stanford neural machine 

translation systems for spoken language domains, 2015). It can also handle 

unknown/rare words using BPE and sub word approaches. Shortly, NMT 

model has the dominance over SMT and rule-based methods, which is not only 

providing scalable, context aware, and dynamic models but also widely being 

used in language translation due to its features. 

 

 

 

 

 

 

 

 

 

 
 
2 Nastaliq is the calligraphy for Arabic scripts which describes the shapes of character and 

joiners of Urdu language based on position. 
3 RASM classes are sequences of character classes and it contains dimensional features infor-

mation. 
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CHAPTER 3 

3. METHODOLOGY 

In our proposed work, the idea of Neural Machine Translation (NMT) 

has been adopted for transliteration purpose, hence renamed with Neural Ma-

chine Transliteration (NMT) in our work and should be considered like this in 

sections ahead. Our NMT is enhanced with an attention-based model discussed 

in Section 3.1 next. The raw corpora collected for Urdu and Roman-Urdu de-

tailed in Section 3.2, are used for training of this NMT model, which provides 

Figure 3.1 Sequence to Sequence NMT architecture  
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us separate embeddings (vectors) for Urdu and Roman-Urdu corpora. Next, 

we performed projections for the two embeddings corpora using a translitera-

tion matrix commonly known as transformation or 2D alignment matrix as 

shown in figure 3.1. This transliteration matrix gives us the estimates of the 

expected locations of matching transliterations for words in Urdu corpus to 

Roman-Urdu corpus.  

In NMT, we used the sequence-to-sequence model that uses encoder-

decoder architecture for model's training as shown in Figure 3.1. The input se-

quence is passed as input and first it tokenizes it into words and then it gener-

ates one hot encoding vector, i.e. [1, 0, 0, 0] vector for the word 'yeh' in Figure 

3.2 (Bahdanau, Cho, & Bengio, Neural machine translation by jointly learning 

to align and translate, 2014). Next in the embedding layer, vocabulary is at-

tached for verification of the input sequence and it acts like a lookup table. 

Embedding weights are randomly initialized in the range (-1, 1) at start for 

input as can be seen in 4x4 matrix and the resultant weights are passed to hid-

den layers, which generate vectors using word2vec models' approach that can 

be seen in (Liu, 2017). At each timestamp, the model reads the input sequence 

from the corpus until it finds the EOS (End of Sentence). Now the decoder 

reads those vector weights of the encoder and passes it as input for translitera-

tion. First it generates the word embedding with the help of target vocabulary 

and then this information is passed to the next hidden layer with encoder 

weights. The decoder vector is passed to a 2D alignment matrix which identi-

fies the word alignments of source and target words and generates output. Then 

the output layer is passed to a softmax layer that uses conditional probability 

to compute the target sentence using Equation 3.1. The equation shows the 

computation of target word y, it checks the input word with all previously pre-

dicted targets and applies argmax on target vector. 

P(y|x) = P(y1|x)P(y2|x,y1)P(y3|x,y1,y2) …….P(yn|y1,y2 …. yn-1x)                  (3.1) 

 

4 The NMT model architecture is taken from tensor flow official  
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In the next step, the predicted word is passed as input and this process keeps 

going for the decoder sequence. The encoder decoder training example is 

shown in Figure 3.2 that illustrates the working. The above Figure 3.2 shows 

that input is converted into one hot encoding vector. Here the input length is 4 

therefore 1x4 vector is generated which is multiplied by random weights [-1, 

1] at start based on embedding layers size. In this example we used the 4 em-

bedding layers and this 4x4 embedding matrix is multiplied with input vector 

and embedding weights generated of size 1x4. Here the horizontal vector is 

used which has 4 dimensions in the above example. Next, these embedding 

weights passed to a hidden layer where we took the dot product with weight 

vector W2 of size 4x4 and encoding vector of size 1x4 is generated. At this 

stage input is completely converted to index form. Now in the next decoder 

phase, we generated one hot encoding of the target sequence and after taking 

the dot product with embedding weights of size 4x4, the decoder vector is gen-

erated as shown in Figure 3.2. These encoder and decoder vectors are then 

passed to a 2D alignment matrix where it finds the word alignments between 

source and target vectors as shown in Figure 3. Finally, the result is passed to 

the softmax layer, which generates the final output. 

Learning rate is an important hyper parameter that controls how much 

to change in response of estimated error reported during training. The learning 

rate is updated based on perplexity stats of the model. For each source se-

quence f = f 
j there is a target sequence f = e 

j
. We want to minimize the 

Figure 3.2 Encoder Decoder Example 
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𝑠=1    𝑖=1     

                                                                               

𝑖      <𝑖 

                                                                               

𝑠=1     

negative log-likelihood or the cross entropy of input sequences {< f(s), e(s) >}s    

and its objective function is given below  

 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐽(𝜃) = ∑𝑆          ∑𝑚𝑖 − log 𝑝 (𝑒𝑠| 𝑒(𝑠); 𝜃)                 (3.2) 

 

The equation 3.2 states that for each distinct target sentence y (1) … y 

(n) with the sentence length m1 … mS we can compute the loss during training. 

At the start we used some initial learning rate and during model training, 

weights are updated in the opposite direction of gradient to minimize the loss. 

The computation cost is reduced by mini batches of size 128.To find the cor-

respondence between source and target words, a 2D alignment vector is cre-

ated that identifies the correspondence between encoder and decoder vectors. 

The correspondence can be one to one, one-to- many, many-to-one and many-

to-many. In Figure 3.3, all these word vectors are placed in a dense matrix, 

which returns a single vector of size V where V is the vocabulary size of target 

sentence length. For each step, it computes the distance between these vectors 

based on selected context size. Next, our objective is to figure out the target 

vector, which has the highest similarity to the source vector. Here in Figure 

3.3 we can see the dark cells correspond to the highest similarity between 

source and target words whereas light grey and while cells show the low sim-

ilarity among them. The example shows that آباد اسالم (2 words) are mapping to 

a single word in Roman-Urdu so it can handle one-to-many and many-to-many 

alignments without any issues. Cosine similarity is used to determine the sim-

ilarity between source and target words. It simply computes the distance 

Figure 3.3 Word alignment between sentences from the source and the desti-

nation using a two-dimensional alignment matrix. 
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between source and target vectors and finds the neighbors based on similarity 

check. The process continues until it reaches the end of the sentence. The co-

sine similarity of two vectors can be computed with the help of following 

Equation 3.3. This equation shows that by taking the dot product of two vectors 

will show the similarity among them and then norm is taken to normalize the 

results. The main problem of this seq-to-seq model is that we need to track the 

long-term dependencies to transliterate the language model. 

           

                                            (3.3)                     

 
The decoder uses the whole last source state as input before starting the decod-

ing process. For each step “t” we need to track the Vt combinations, therefore, 

the complexity of the model is O (VT) where V is the vocabulary size of the 

source input sentence and T is the overall number of steps. 

  

Figure 3.4 Example of Attention based architecture of NMT 
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3.1  Attention Based Model 

As discussed in the above section in the sequence-to-sequence model, 

we need to track down all the possible combinations for final output, which is 

computationally expensive for long sentences. The last state of the encoder 

needs to store all the information of the source before decoding starts. Attention 

based models resolve these issues of sequence-to-sequence model by adding a 

straight connection between source and target language. It pays consideration 

to the relevant context vector, which needs to be transliterated. The attention-

based architecture is shown in Figure 3.4. Here, we can see that Input is passed 

to the embedding layer and then attention weights are computed. In the next 

step, the weighted average of source states are combined and a context vector 

is created which is then combined with the current target state to generate the 

attention vector. Attention vector is then passed to previously discussed align-

ment matrix and softmax function is applied to get the final output. Luong 

(Luong, Pham, & Manning, 2015) proposes the multiplicative (where source 

and target vectors are multiplied with weights) whereas Bahdanau (Bahdanau, 

Cho, & Bengio, Neural machine translation by jointly learning to align and 

translate, 2014) proposes the additive style (where source and target vectors 

are added after multiplying with weights) for score finding of attention weights 

as shown in Equation 4. Here, hs and ht are source and target hidden states and 

tanh function is applied for normalization purposes. In Equation 3.5, each 

score of source to target is computed using exponent and then divided (for 

normalization purpose) with the sum of exponent scores of all the sources. In 

this way, the attention weights ats are computed. Next, the product of attention 

weight ats and source hidden state hs are computed for all the source states and 

then summed up to achieve the context vector ct as shown in equation 3.6. 

Finally, the target weights wt, context vector ct with decoder hidden state hs is 

passed to a function tanh (input), which generates the final target attention vec-

tor at according to Equation 3.7. The attention output mostly gets information 

from such a hidden state, which has the high attention. This process continues 

until the end of sentence. 
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                                 ℎ𝑡 𝑊ℎ𝑠                                                          𝐿𝑢𝑜𝑛𝑔′𝑠                           (3.4) 

𝑠𝑐𝑜𝑟𝑒 (ℎt, ℎs) =       v𝑎 𝑡𝑎𝑛ℎ (𝑊1 ℎ𝑡 + 𝑊2 ℎ𝑠)         𝐵𝑎ℎ𝑑𝑎𝑛𝑎𝑢′𝑠 

                                                                𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒 (ℎ𝑡, ℎ𝑠))  
(3.5) 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑎𝑡𝑠   =             s=1∑𝑁   𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒 (ℎ, ℎ)) 

  

 

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑐𝑡 = ∑s 𝑎𝑡𝑠 ℎ𝑠                                                                                                (3.6) 

 

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑎𝑡 = 𝑓 (𝑐𝑡, ℎ𝑡) = 𝑡𝑎𝑛ℎ (𝑊c [𝑐𝑡; ℎ𝑠])                              (3.7) 

 

 

We used the LSTM for both encoder and decoder unit cells which can handle 

the long-term dependencies in an efficient way (Park, Song, & Kim., 2018). 

Both Luong and Bahdanau methods that are discussed in (Luong, Pham, & 

Manning, 2015) & (Bahdanau, Cho, & Bengio, Neural machine translation by 

jointly learning to align and translate, 2014) are applied to validate the model 

performance. Sequence-to-sequence model uses a forward feed method by de-

fault to predict the target but in some cases feedforward information is not 

enough, therefore, We also used a bi-directional model, which makes superior 

predictions by taking into account both the subsequent layer and the previously 

unseen data. 

3.2  Data Gathering 

To perform language transliteration, data is gathered from multiple re-

sources using scraping packages (scrapy5). The important challenge of crawl-

ing sites is to find relevant sources, which can provide us with a parallel corpus 

of Urdu and Roman-Urdu as well6. Following are the sources used for collec-

tion of corpora. 

In Table 3.1, we can see the Roman-Urdu has more vocabulary as compared 

to Urdu and it is due to the data variation issue.  

 

 

5 
Scrapy is an open source framework that is used to scrape the data from websites 

https://scrapy.org/ 
6 Parallel corpus https://github.com/wajahatuk/ru_u_corpus 

https://scrapy.org/
https://github.com/ahmedsharif/roman_urdu_to_urdu_corpus
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For example, معافی 'forgiveness' can be written as maafi, mafi, muafi, maafy, 

etc., and all these versions can exist in Roman-Urdu but not in Urdu. The da-

taset is divided into training, holdout and testing sets. We used 75% of sen-

tences as training, 10% for holdout and remaining 15% is used as a test set.  

The vocabulary is generated with the help of a training set after applying to-

kenization on it. This whole dataset is passed to the data-cleaning phase that is 

discussed in Section 4. 

Table 3.1 Data Feed Information 

Source Number of 

Sentences 

Vocab 

Urdu 

Vocab Roman-

Urdu 

https://jang.com.pk/roman 45,000 26,000 43,000 

https://ythisnews.com/ 17,000 9,800 7,859 

  Total 62,000 35,800 50,859 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

https://jang.com.pk/roman
https://ythisnews.com/
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CHAPTER 4 

4. IMPLEMENTATION AND ISSUES 

4.1  Data Cleaning 

Data cleaning operations performed to make our corpus able for train-

ing on neural machine transliteration (NMT) are as follows: 

Case Sensitive issue: NMT doesn’t handle case-sensitive issues and mark the 

same word as <UNK>. Therefore, we need to apply transformation on Roman-

Urdu dataset, which is applied by converting uppercase to lowercase. For ex-

ample Islamabad vs islamabad should belong to the same word embedding in 

Roman- Urdu. 

Deletion of special characters: Through data scraping, some special characters 

were present which needed to be deleted. These symbols include characters 

like $, %, #, (), @, & exist which require proper handling. Moreover, there 

were some encoding issues due to other languages i.e. Arabic or Persian appear 

in Urdu script. 

Data abbreviations handling: Roman-Urdu is a slang language and can have 

abbreviations in sentences that need proper handling. This issue is handled 

smartly as acronyms normally appear in capital case; therefore these words are 

stored in our vocabulary. Some of the acronyms are PTI (Political Party), 

PMLN (Political Party), ISBP (Army Department), SBP (State Bank of Paki-

stan) etc. 
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Splitting sentence issues: In Roman-Urdu, some words and abbreviations nor-

mally end with period ‘.’ i.e. Dr., Prof etc. Sentence separation of Roman-Urdu 

is mostly with period but there are numeric cases like 14.3, which need to be 

addressed. These cases are handled manually. 

4.2  Unknow Words Handling 

NMT model performs well as compared to conventional and phrase 

level models but it takes more computational time for training. Secondly, NMT 

model performance is not so good for rare/unknown words and it is a challeng-

ing task. Therefore, an algorithmic-based approach (sub word) is used in our 

model. The sub word is a method that performs breakdown on available vo-

cabulary and tries to understand the words. It is the same as using character 

level embedding for rare words. It is similar as Byte Pair Encoding (BPE) but 

it creates new subwords by likelihood not by highest frequency pair. For ex-

ample سربراہ-sarbrah is treated as 

 .at, etc– ات ilzam and– الزام ilzamaat as الزامات ,brah- براہ sar, and - سر

The alternative method in use is called Byte Pair Encoding (Sennrich, Haddow, 

& Birch, 2015), which improves breakdown uniformity and lessens the issue 

of adding or removing characters during transliteration. It uses the vocabulary 

threshold so that the script only uses the character embedding for rare or un-

known words. Its algorithm is as follows: 

 

ALGORITHM 1: Byte Pair Encoding Algorithm: 

a.  Select the desired sub-word vocabulary size. 

b.  Split the word into sequences of characters and append suffix </w> (end of 

word) with word frequency. 

c.  Generate the new sub-word to the high frequency occurrences. 

d.  Repeat step 3 until reaching the target vocab size defined in step 1 or next 

highest frequency pair 1. 

For example شہری 'Sehri/Citizen’, شعبہ 'Shobah/Department',   'متعلق ‘Mutal-

liq/about’,  یجعل   Jaali/fake’  have highest frequency pairs as شع، ‘Sha’, تع ‘Ta’ 

and in next iteration it will calculate the target word by adding these vocab as 
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well. 

4.3  Urdu And Roman-Urdu Related Issues 

Urdu language has rich morphological structure and due to that same 

word can appear in different ways. Roman Urdu, lacks any patterns and is a 

slang language. Data variation is the challenging task because Roman Urdu 

has multiple versions of the same word that exist i.e. words like raha, rha, 

raahaa belong to the single Urdu word رہا. These words vectors have high sim-

ilarity to each other and we need to filter the correct pair among those cases. 

Secondly, one-to-many and many-to-one word alignment exists for Urdu to 

Roman-Urdu transliteration, which 2D alignment matrix caters i.e. PTI will 

map to 3 words ( ٰ یپ یآ  ٹ  ٰی (in Urdu. Realignment of sentences is not a big 

deal for NMT models. Thirdly, Urdu is one of the low resource languages and 

its parallel corpus is not available. Another issue we faced during data cleaning 

was the text delimiter issue for both Urdu and Roman-Urdu. Urdu sentences 

mostly end with dash (-) but it can be appeared to combine sentences. Simi-

larly, for Roman-Urdu dot (.) can be appeared for abbreviations like P.T.I, Dr. 

Prof. and also for numeric values 23.5 which requires proper handling. Under-

standing context is very important for meaningful transliteration. NMT pre-

dicts the correct word based on the alignment vector which adds significant 

improvement in the model accuracy. For example, if the rare words are passed 

as input then it first maps it to the nearest matched word (using sub word and 

other techniques) based on word alignment and returns correct results. 

4.4 Rule Based Approach For Urdu To Roman-Urdu Transliteration 

Urdu is one of the languages that has a rich morphological structure. 

Therefore, no exact one to one mapping exists between Urdu and Roman-Urdu 

language vocabulary, especially for vowel cases it’s much more complicated. 

For this rule based approach, a data dictionary (character level) is created with 

the help of Unicode characters of both languages. The dataset details are shared 

in table Table 3.1 where we also added special characters to improve the 
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results. Most common Roman-Urdu mapping issues are diacritic handling, 

vowels and consonant (i.e. Y can be treated as a vowel as well as consonant 

based on case) handling, different versions of the same word in Roman-Urdu 

(i.e. raha, rahha, rha etc) and double roman letter (germination) (Ahmed, 

2009). Here we used the simple approach to perform transliteration using that 

dictionary mapping. Same dataset is passed to a rule based approach without 

applying any filters. The data also contains abbreviations, complex and rare 

words as well. Finally, results are evaluated using word and character level 

BLEU score between predicted vs reference words. 
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CHAPTER 5  

5. EXPERIMENTS & RESULTS 

Rigorous testing performed for hyper parameters tuning. We used 

Google Colab TPU’s for model training. The dataset is separated into three 

sections, training, holdout and testing dataset. In our experiment, 75% dataset 

used for training, 10% for holdout and residual 15% used as test dataset. This 

holdout dataset helped us to estimate the performance of the final model. 

Following model settings are selected after doing thorough testing: 

• There is no fixed length of sentences used. Input and target sequence 

length is not the same in most of the cases. 

• For each layer 128 LSTM cells used for the model. 

• Context window is selected as 5, which means it checks 2 words from 

left and 2 words from right of the current word while doing translitera-

tion. 

• Step sizes are selected in the range of 12k-30k (~12- 30 Epoch) after 

performing extensive testing. We used the learning decay rate that de-

creases the learning rate after every 1000 steps. The initial value of 

learning rate is 1.0 for SGD and 0.001 for Adam optimizer. 

• Number of unseen layers is nominated as 2 for encoder and decoder. 

• Adam7 and Stochastic Gradient Descent (SGD)8 optimizers have been 

used for the model training. 

• Results are evaluated by using Bi-lingual Evaluation Understudy 

(BLEU). We used the sentence level BLEU score to evaluate the 
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transliteration results which uses cumulative n-gram models (unigram, 

bigram, trigram and 4-gram). We assigned equal weights to these n-

gram models and it passed as a tuple. i.e. 1-gram (1, 0, 0, 0), 2-gram 

(0.5, 0.5, 0, 0), 3-gram (0.33, 0.33, 0.33, 0) and 4-gram (0.25, 0.25, 

0.25, 0.25) sentence_bleu (reference, candidate, weights = (0.25, 0.25, 

0.25, 0.25)) 

• Initially for the training model, weights are assigned between [-0.1, 

0.1] range. Weights are uniformly assigned to both encoder and at de-

coder level we are using encoder output as weights. 

 

 

Embedding size of 512 is selected which gives good results. This value was 

selected after extensive testing. The model takes around 2-3 days for model 

training with Google GPU’s. 

5.1  Quantitative 

The results are evaluated using BLEU score on training and testing da-

taset. The configuration details for BLEU are shared in the above paragraph. 

We used the preexisting rule based approach that is discussed in section 4.4 

(Ahmed, 2009). It uses one to one mapping for transliteration. Mapping dic-

tionary is passed as vocabulary and based on it, we achieved the BLEU score 

of 27.18% at character level transliteration. The performance is low because 

there are cases where we have vowels, germination, diacritics, Roman-Urdu 

dataset variation issues and it requires complex rules to handle those cases. 

From test results we observed that there is a high percentage of cases where 

diacritics and vowel words caused low match rate. We haven’t applied com-

plex rules in our approach. Second rule based approach doesn’t generate con-

text aware results that’s why this mapping generated wrong results in some 

cases. Thirdly, it can’t handle the abbreviated words i.e. PTI, ISBR, WHO etc. 

 

7 Adam is an optimizer which updates network weights using an iterative approach. It’s also 

called an adaptive learning approach. 
8 Stochastic Gradient Descent is also an optimizer that keeps the same learning rate during 

training.  
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Word alignment (1 to many) is another issue affecting the results. Here BLEU 

score evaluates the correspondence of predicted and target words by counting 

the number of matches. 

Table 5.1 Rule Based Approach Results 

 System  Test BLEU Score % 

 Unicode mapping using character level approach 27.3% 

 IJunoon (Roman-Urdu to Urdu Results)9 86% 

 Brahmi-Net REST API10 29.87% 

 

5.1.1  Comparison of Ijunoon Results 

There is no doubt that the IJunoon rule based approach handles a lot of 

cases. Therefore in order to compare and evaluate the model performance, we 

ran our test dataset on the IJunoon approach and figured out some cases where 

it’s not working well. First case is that it cannot handle complex words and 

return the same input for those cases. Secondly, in Urdu language, some words 

can be written in compound format (7th column word) and it didn’t generate 

the transliteration for those words. Thirdly as they are using word level ap-

proach, therefore their approach is unable to transliterate those words. Also ac-

ronym handling and compound words (i.e. مارہلا مرمح  ) is not available in this ap-

proach. We also observed that in some cases its handling compound words (i.e. 

Islamabad) but when we run it on our corpora, we figure out a lot of cases 

where the model is not performing well. Some of those cases are also shared 

below Table 5.2. 

Table 5.2 IJunoon Results 

Input 

(Ur) 

ٹفاڈر

گن  

سمبھاے

 ل

ںویامنہر نمارپ  یرداقلارہاط ردعمل  دراکیر 

گن  

حرم الحرامم  

Output 

(RU) 

ارڈ

نٹف

 گ

اھبسم

 ےل

یامنہر

 ںو

pur 

aman 

ردعم

 ل

دالقاراہط

 یر

دراکیر

 گن

Mehram 

alhram 



IJSER

 

23  

5.1.2  Comparison of Brahmi-Net Approach 

In the next step, we compared the results of the Brahmi-Net approach 

discussed in paper (Kunchukuttan, 2015). The results are evaluated on our test 

dataset. The test sentences are passed to API and results are compared with the 

original dataset. From the test results, we achieved a BLEU score of 29.87% 

which is not really good. After further analysis we figure out the reason for the 

low results. First reason is that this approach is not handling diacritics and vow-

els, hence, even for common Urdu words, it generates wrong transliteration. 

The wrong transliteration results are showing below. The vowels handling is 

mandatory to achieve good results because same letter (Alif ا) can be mapped 

to different roman-urdu letters (i.e. A, I). As we are using the same test dataset 

for model evaluation, we figure out compound words are not handled in this 

approach. Whereas our neural network approach is able to perform translitera-

tion based on context and can handle word alignment without any issues like 

in Table 5.3. 

Table 5.3 Brahmi-Net Results 

Input 
(ur) 

 مر ممکن بعد

 ض
   ہوں ےس

 گ
 صحا

 ف
 وکال اضافہ نیرت

Out-
put(ru
) 

Bed mum
con 

marj
i 

Tse Hon
ts 

igm shap
hy 

train ajao
phy 

Okla 

 

5.1.3  Comparison of Nmt Model 

On the other hand, Table 5.4 is showing the sequence to sequence 

model results. Because Vanilla RNN uses greedy approach and takes more 

time on long sequences, therefore, this model is applied on small chunks. Table 

statistics show poor performance of the NMT model because we chose a small 

chunk for training purposes to reduce time. Second, we passed long sentences 

with a sentence length of 65 words so the model performance remained poor 

due to issue of long-term dependencies as can be seen through the low scores. 

 

  9   https://www.ijunoon.com/transliteration/urdu-to-roman 

  10 https://www.cfilt.iitb.ac.in/brahminet/ 

http://www.ijunoon.com/transliteration/urdu-to-roman
http://www.cfilt.iitb.ac.in/brahminet/
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Table 5.4 Squence to Sequence RNN Results 

Model Name Scoring 

Function 

Epoch Train 

BLEU 

(%) 

Test 

BLEU 

(%) 

Vanilla RNN Single NMT 18 4.1 0.8 

Forward Scaled Luong 

Model Epoch 18 

Scaled Luong 18 36.8 36.8 

Forward Scaled Luong 

Model Epoch 24 

Scaled Luong 24 37.8 37.8 

Forward Scaled Bahdanau 

18 Epoch 

Scaled norm 

Bahdanau 

18 31.2 42.8 

Bi-direction normed Bah-

danau Epoch 20 

Normed Bah-

danau 

20 49.3 72.1 

Attention Based Model 

(Word level) 

BPE 30 53.5 31.3 

Attention Based Model on 

Unseen data (Character 

Level) 

Attention 

based (BPE) 

18 40 27.2 

 

 

The attention based model results are also listed in the above table, which has 

different scoring functions (Luong and Bhadanau) and Epoch. This attention 

based model reduces model time and it can handle long sequences with the 

help of LSTM cells. We tried different scoring functions (Bahdanau, Normed 

Bahdanau, Luong, and Scaled Luong) for model training. The result shows that 

after 18 -30 Epoch, model highest score is achieved on Bahdanau bi-direc-

tional model with epoch 20. The vocab size is fixed for all these attention-

based models. 

Due to static vocabulary issues, some of the words are mapped with unknown 

tokens. Therefore we picked a subset of unknown/rare words and applied sub-

word and BPE algorithms to it. It converts rare/unknown words to base words 
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as stated in Table 5. Results are showing that the NMT model produces a test 

score of 27.2 on unseen testing data, which is good performance on unseen 

data. Figure 5.1 shows that only increasing the step size is not enough but a 

proper hyper-parameter tuning is required to achieve a high performance. At 

20 Epoch, we achieved a high BLEU score of 72.1. We can say that the pro-

posed attention based model performs well on Urdu text and it can handle un-

seen words. 

 

 

Figure 5.1 Step Size vs BLEU Score 

5.2  Qualitative 

The results are evaluated using the BLEU score as shown in Table 5.4. 

In this table we have added different cases of different sentence length, rare 

words and unknown words. We can conclude these points as follows based on 

transliteration results. 

1. The model is able to transliterate most of the sentences using the NMT and 

attention-based model. We achieved a BLEU score of 72.1 on test data,  

which is promising yet. 

2. As we are using RNN models, there is no restriction on source and target 

sequence lengths. Generally, the length is not the similar for the source and the 

target sentences. 

3. Based on results we observed that the model can handle one-to-many 
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alignments or vice versa cases without any issues. With the help of an attention 

based model, we can handle these cases whereas a dictionary based/rule-based 

approach can only handle the one-to-one cases. Some of the abbreviations 

passed to the models are PTI (abbreviation for the name of political party), JIT 

(abbreviation of a commission) etc. 

4. Roman Urdu is a slang language and abbreviations may exist in dataset i.e. 

PTI, NA, Dr, Prof, ISBR, etc. The model was trained on these abbreviations 

and in test results; it not only maps words with correct abbreviation but also 

provided satisfactory results. Existing techniques transliterate یآ  words but our 

model predicts words like this correctly as a single word as P T I three words 

but our model predicts words like this correctly as a single word. 

5. Some researchers have addressed coverage issues by restricting the se-

quence length. However, in our model, we evaluate the results on both static 

and dynamic input lengths, including sentences with more than 50 words. 

While increasing the length may result in longer computation times, our model 

has no limitation on sentence length. This is possible due to the attention-based 

model (LSTM), which effectively handles long-term dependencies without 

any issues. We experimented with a maximum sentence length of 65 words 

and observed good performance even on such lengthy sentences. 

6. In our model, we observed that some erroneous words were predicted, as 

shown in Table 6. These predicted erroneous words exhibit a close relationship 

with the correct word, indicating the model's understanding of the context. Ad-

ditionally, to handle Out of Vocabulary (OOV) words, we applied word seg-

mentation (subword) and Byte Pair Encoding (BPE) techniques. This resulted 

in a BLEU score of 27 on unseen data. 

7. Given the rich morphology of Urdu, we made efforts to cover common mul-

tifaceted cases of transliteration from Urdu to Roman Urdu. It was observed 

that the model predicts the most common words more precisely compared to 

rare words.. For the rare words, we used subwords and BPE approaches. Some 

of the less frequent words are نڈیسکاٹل  Scotland, یتقرر  ‘taqarruri/hiring’, احمقانہ 

‘ehmaqana/foolish’, الزامات ‘ilzamaat/blame’ etc., are listed in Table 5.5. 
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Table 5.5 Qualitative result set 

 Test set Input (Urdu)  Test set Output (Roman-Urdu) 

 Imran Khan aaj Karachi mein ےگنیرک دتایق یک چرام ںیم یچارک آج ناخ نرامع
March ki qayadat karinge 

 Tariq Fatimy ne ilzamaat ko be یاد ےد اررق داینب ےب وک تامزالا ےن یمطافرق اط
bunyaad qarar day diya 

 Pakistan aur West Indies ke زاغآ اک ٹسیٹن ایمدر ےک ازدنا ٹسیر ووا ناتسکاپ
darmiyan test ka aaghaz 

 Afghanistan mein Daish ka یاگ راام باسح لدبع یخش ہاربرس اک یشد یںمن اتسناغاف
sarbarah Sheikh Abdul hisaab 
mara gaya 

Erroneous Cases 

 اک یفاعم ےس ناتسناغاف اک قحل و جراس ،لہمح نمچ

 ہبلامط

Chaman <unk> Siraj ul <unk> 
ka Afghanistan se maffi ka mu-
talba 

 ،ےہ ہناقمحا ششوک یک ےنوہ زادنا رثا رپ یٹ  آئ ےج

 قیرف دعس

JIT par assar andaaz honay ki ko-

shish ehmaqana hai , Saad 
Rafeeq 

-Scotland yard ne Sarfaras Mer ید رک سپاو مرق وک ٹنچرم رازفرس ےن ڈرای ڈنیلٹاکس

chant ko raqam wapas kar di 

 Los Angeles mein mazedar ice میزیوم خی اڈنھٹ انب ےس میرکس ا اردیمز یںم یسلگنا الس
kareem se bana thanda yakh mu-
seum 

 راددل ریما اک یچراک یوگنھج رکشل ،یئروااک یک دتت

 یراھب ک،لاہ اچچ رفع

 دمرآب دورابو ا ہحلسا یںم رادقم

Ikhlaq ki nigaran, <unk> bhi-

karan Karachi ka Ameer <unk> 
urf <unk> halaak , bhaari mi-
qdaar mein asleha o barood 
baraamad 

 مان اک نج ےگوہ ملاش گول ےسیا ضعب یںم یئآ  یٹ یپ

 رمع دسا ،انس راب یلہپ

PTI mein baaz aisay log shaamil 

hogaye jin ka naam pehli 
baar suna , Asad umar 

 نہت ایح ات مظعا ریوز، لہصیف یخیرات اک ٹروک میرپس

 رارق لہا

<unk> <unk> ka tareekhi 

<unk> <unk> e Azam ta hayaat 
<unk> ahal qarar 

Longer Dependency Sentence 

 یک ےنانب ہناشن وک یسولپ ےک ےہ اتوہم علوم اسیا رہابظ

 یئگ یک ششوک
Bazahir aisa maloom hota hai ke 

police ko nishana bananay ki ko-

shish ki gayi 

 اکنیرپ ڈلور قہباس روا راٹسا رپس یک یرٹسڈنا مفل یترھب

 وا رثکا یںہنا ،ینعم ہرگلاس نو 36 ینپا لک ےن ہڑپوچ

 یزایتما ےس ہجو یک تگنر ریہگ یپنا رتشیب

 ےہ اتڑپ انرک انماس اکک سلو

Bharti film industry ki super star 

aur Sabiqa education world Pri-

yanka chopra ne kal apni 36 win 

saalgirah manayi , inhen aksar o 

beshtar apni gehri rangat ki 

wajah se imtiazi sulooq 

ka saamna karna parta hais 
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CHAPTER 6  

6.  CONCLUSION AND FUTURE WORK 

We transliterated from Urdu to Roman-Urdu using the NMT style, 

which has been increasingly popular in recent years. The outcomes of the 

existing models' usage of statistical and rule-based methods for transliterat-

ing Urdu are also good. This neural model is primarily used because it has a 

dynamic design that produces rich, context-aware outputs and can manage 

long-term dependencies while transliterating languages. A strong aspect of 

this model is its ability to perform effectively on data that hasn't been seen 

before. It also runs smoothly on languages with few resources. Finally, using 

the training and testing datasets, we obtained BLEU scores of 52 and 72, 

which adds a considerable improvement in the transliteration of Urdu into 

Roman-Urdu. In future, we will use multi-lingual models (BERT) and trans-

formers (Multilingual and Bi- lingual) models to improve model perfor-

mance. These models perform training based on generic vocabulary of dif-

ferent languages and this generic model produces phenomenal results. 
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