
IJSER

TRANSLITERATING URDU TO ROMAN URDU USING

NEURAL NETWORK

WAJAHATULLAH KHAN

IŞIK UNIVERSITY

 JULY, 2023

IJSER

TRANSLITERATING URDU TO ROMAN URDU USING NEU-

RAL NETWORK

WAJAHATULLAH KHAN
Işık University, School of Graduate Studies, I.T Master Program,

2023

This thesis has been submitted to Işık University School of Graduate Studies

for a Master’s Degree. (MA)

IŞIK UNIVERSITY

JULY, 2023

IJSER

IJSER

ii

TRANSLITERATING URDU TO ROMAN URDU

USING NEURAL NETWORK

ABSTRACT

Transliteration is a process of converting a word from the alphabet of one lan-

guage to another language. Previously used techniques are related to statistical,

phrase level and rule-based approaches but Neural Machine Translation (NMT)

has replaced it because of its heterogeneous, scalable and dynamic structure.

NMT is used for rich resource languages e.g. German, Vietnam, Chinese and also

performing well for poor resource languages like Myanmar, Hindi, and Roman-

Urdu. Urdu is a low resource language and there is no significant work done to

transliterate using NMT models. In this paper, we are working on Urdu to Roman-

Urdu transliteration using sequence-to-sequence and attention-based models.

This model uses the Encoder-Decoder architecture that takes one language as in-

put (source) and decoder transforms it to desire output (target). Its results are phe-

nomenal for rich resource languages, providing context aware and scalable solu-

tions. In the field of language transliteration, Long Short-Term Memory (LSTM)

and Bi-directional models are commonly employed to effectively deal with long-

term dependencies. To handle unseen data, a combination of Byte Pair Encoding

(BPE) and subword techniques is utilized, employing a hybrid approach that in-

corporates both word and character level embeddings. In order to evaluate the

performance of the transliteration system, experiments are conducted on a parallel

corpus consisting of 60k samples, which were generated from scratch. The system

undergoes extensive testing to fine-tune the hyperparameters, ultimately achiev-

ing state-of-the-art results measured by the BLEU score on both the training and

testing datasets. Additionally, the NMT model provides scalable, robust, context

aware structure and can handle out-of-vocabulary (OOV) words.

Keywords: Neural Network, Urdu Transliteration, Translation

IJSER

iii

NEURAL AĞ KULLANARAK URDU'DAN RÖMENCE UR-

DU'YA DÖNÜŞTÜRME

ÖZET

Harf çevirisi, bir kelimeyi bir dilin alfabesinden başka bir dile dönüştürme

işlemidir. Daha önce kullanılan teknikler istatistiksel, kelime öbeği düzeyinde

ve kural tabanlı yaklaşımlarla ilgiliyken, heterojen, ölçeklenebilir ve dinamik

yapısı nedeniyle Nöral Makine Çevirisi (Neural Machine Translation) onun

yerini almıştır. NMT, örneğin zengin kaynak dilleri için kullanılır. Almanca,

Vietnam, Çince ve ayrıca Myanmar, Hintçe ve Roman-Urduca gibi zayıf

kaynak dilleri için iyi performans gösteriyor. Urduca düşük kaynaklı bir dildir

ve NMT modellerini kullanarak transliterasyon yapmak için yapılmış önemli

bir çalışma yoktur. Bu yazıda, diziden diziye ve dikkat tabanlı modeller kulla-

narak Urduca'dan Roman-Urduca harf çevirisi üzerinde çalışıyoruz. Bu model,

bir dili girdi (kaynak) olarak alan Kodlayıcı-Kod Çözücü mimarisini kullanır

ve kod çözücü bunu istenen çıktıya (hedef) dönüştürür. Bağlama duyarlı ve

ölçeklenebilir çözümler sağlayan sonuçları, zengin kaynak dilleri için

olağanüstü. Dil harf çevirisi alanında, Uzun Kısa Süreli Bellek (Long Short-

Term Memory) ve Çift yönlü modeller, uzun vadeli bağımlılıklarla etkili bir

şekilde başa çıkmak için yaygın olarak kullanılır. Görünmeyen verileri işlemek

için, Bayt Çifti Kodlama (Byte Pair Encoding) ve alt sözcük tekniklerinin bir

kombinasyonu kullanılır ve hem sözcük hem de karakter düzeyi katıştırmalarını

içeren hibrit bir yaklaşım kullanılır. Harf çevirisi sisteminin performansını

değerlendirmek için sıfırdan oluşturulmuş 60 bin örnekten oluşan paralel bir

derlem üzerinde deneyler yapılmıştır. Sistem, hiperparametrelerde ince ayar

yapmak için kapsamlı testlere tabi tutulur ve sonuçta hem eğitim hem de test

veri kümelerinde BLEU (İki Dilli Değerlendirme Öğrencisi) puanıyla ölçülen

son teknoloji ürünü sonuçlara ulaşır. Ek olarak, NMT modeli ölçeklenebilir,

sağlam, bağlama duyarlı bir yapı sağlar ve sözcük dağarcığı dışındaki (kelime

dağarcığı dışında) sözcükleri işleyebilir.

Anahtar Kelimeler: Sinir Ağı, Urdu Transliterasyonu, Çeviri

IJSER

iv

ACKNOWLEDGEMENTS

I am deeply grateful to the numerous individuals who have played a pivotal role

in making my years at graduate school immensely valuable. Foremost, I would

like to express my sincere gratitude to Gülsüm Çiğdem Çavdaroğlu, my major

professor and dissertation supervisor. Working alongside her throughout the

years has been intellectually rewarding and fulfilling. I am also indebted to Şa-

hin Aydin, whose contributions were invaluable from the early stages of my

dissertation research. Gülsüm Çiğdem Çavdaroğlu made significant contribu-

tions to the development of the econometric model, and I am thankful for her

insightful suggestions and expertise. I extend my heartfelt appreciation to the

computer staff of the department, who patiently addressed my queries and as-

sisted me with word processing issues. I would also like to acknowledge my

fellow graduate student colleagues who provided unwavering support through-

out the challenging years of coursework and exams. Lastly, I would like to ex-

press my deepest gratitude to my family. To my parents, Muhammad Nadir

Khan and Zille Huma, I am immensely thankful for their patience and unwa-

vering encouragement. Finally, I am eternally grateful to my wife, Rabail Sajid,

whose unwavering support has been a constant source of strength throughout

this arduous journey.

Wajahatullah KHAN

IJSER

v

TABLE OF CONTENTS

APPROVAL PAGE ... i

ABSTRACT ... ii

ÖZET .. iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

ABBREVIATIONS LIST .. ix

CHAPTER 1 .. 1

1. INTRODUCTION .. 1

CHAPTER 2 .. 4

2. MOTIVATION AND RELATED WORK ... 4

CHAPTER 3 .. 8

3. METHODOLOGY .. 8

3.1 Attention Based Model ... 13

3.2 Data Gathering .. 14

CHAPTER 4 .. 16

4. IMPLEMENTATION AND ISSUES ... 16

4.1 Data Cleaning.. 16

4.2 Unknow Words Handling ... 17

4.3 Urdu And Roman-Urdu Related Issues .. 18

4.4 Rule Based Approach For Urdu To Roman-Urdu Transliteration 18

IJSER

vi

CHAPTER 5 .. 20

5. EXPERIMENTS & RESULTS ... 20

5.1 Quantitative ... 21

5.1.1 Comparison of Ijunoon Results ... 22

5.1.2 Comparison of Brahmi-Net Approach 23

5.1.3 Comparison of Nmt Model ... 23

5.2 Qualitative ... 25

CHAPTER 6 .. 28

6. CONCLUSION AND FUTURE WORK ... 28

REFERENCES .. 29

CURRICULUM VITAE ... 34

IJSER

vii

LIST OF TABLES

Table 3.1 Data Feed Information ... 15

Table 5.1 Rule Based Approach Results.. 22

Table 5.2 IJunoon Results .. 22

Table 5.3 Brahmi-Net Results .. 23

Table 5.4 Squence to Sequence RNN Results ... 24

Table 5.5 Qualitative result set .. 27

IJSER

viii

LIST OF FIGURES

Figure 3.1 Sequence to Sequence NMT architecture....................................... 8

Figure 3.2 Encoder Decoder Example ... 10

Figure 3.3 Word alignment between sentences from the source and the

destination using a two-dimensional alignment matrix. 11

Figure 3.4 Example of Attention based architecture of NMT model purposed

in (Luong et al., 2015).. 12

Figure 5.1 Step Size vs BLEU Score ... 25

file:///D:/Downloads/Wajahat_Thesis_in_Print_Format.docx%23_Toc140323174
file:///D:/Downloads/Wajahat_Thesis_in_Print_Format.docx%23_Toc140323175
file:///D:/Downloads/Wajahat_Thesis_in_Print_Format.docx%23_Toc140323176
file:///D:/Downloads/Wajahat_Thesis_in_Print_Format.docx%23_Toc140323176
file:///D:/Downloads/Wajahat_Thesis_in_Print_Format.docx%23_Toc140323177
file:///D:/Downloads/Wajahat_Thesis_in_Print_Format.docx%23_Toc140323177

IJSER

ix

ABBREVIATIONS LIST

SMT: Statistical Machine Translation

NMT: Neural Machine Translation

RNN: Recurrent Neural Network

WP: Word Penalty

CSLM: Continuous Space Language Model

GNMT: Google Neural Machine Translation Model

OOV: Out of Vocabulary

LSTM: Long Short-Term Memory

BPE: Byte Pair Encoding

OCR: Optical Character Recognition

POS: Part of Speech

ITRANS: Indian Language Transliteration

BJM: Bi-directional Joint Model

SGD: Stochastic Gradient Descent

BLEU: Bilingual Evaluation Understudy

IJSER

1

CHAPTER 1

1. INTRODUCTION

Language transliteration is a type of conversion from one script to an-

other script using letters. Transliteration has high importance and it’s being

used in Greek, Latin Urdu, Hindi and Arabic languages (Ahmed, 2009). The

major challenges of transliteration are to distinguish the syntax, semantics and

morphology of the languages (Kyunghyun, et al., 2014) (Durrani, Sajjad,

Fraser, & Schmid, 2010) (Gupta, Joshi, & Mathur, 2013). In the past, Statisti-

cal Machine Translation (Lagarda, Alabau, Casacuberta, Silva, & Diaz-de-

Liano, 2009) and rule based techniques were commonly employed for lan-

guage transliteration. However, these techniques have been suspended as they

yielded low-performance results (Luong & Manning, Achieving open

vocabulary neural machine translation with hybrid word-character models,

2016). Vocabulary size and unknown words handling are the major issues of

these models. Similarly, for transliteration, rule based (Ahmed, 2009) (Gupta,

Joshi, & Mathur, 2013) sound based, script based, and diacritics-based han-

dlings were performed but these approaches are not able to handle long-term

dependencies and semantics (Bahdanau, Cho, & Bengio, Neural machine

translation by jointly learning to align and translate., 2015). With this evidence

and to the best of our knowledge, at present, no significant work has been done

for transliteration of Urdu to Roman Urdu using Neural Networks.

NMT is an advanced architecture that is emerging and now being used

in language transliteration (Cho, Merriënboer, Bahdanau, & Bengio, 2014). It

IJSER

2

uses encoder-decoder architecture for language transliteration. Its results are

phenomenal for rich resource languages, providing context aware and scalable

solutions (Luong, Pham, & Manning, 2015). Hence, this technique being used

for low resource languages i.e. Arabic, Hindi etc., and it provides promising

results (Alam & Hussain, 2017) (Durrani, Sajjad, Fraser, & Schmid, 2010).

Urdu is mainly derived from Arabic and Persian in terms of vocabulary and

has a close syntactic structure with Hindi, which motivated us to perform this

work on Urdu language (Saini & Sahula, 2018). In this paper we used the se-

quence to sequence (RNN) model for model training. The input (Urdu) se-

quence of variable length is passed as input, which is converted to fixed length

vector and then at decoder level, it converts the Roman-Urdu text into vector

form and uses the encoder’s last hidden layer output to initialize weights. Both

layers results are passed to the projection matrix to generate the results. We

used the tensor flow NMT1 model for language transliteration. The NMT

model can handle the word alignments with the help of projection matrix (aka

2D alignment matrix) that maps the target word correctly and it provides one-

to-Many and Many-to-one words alignment. We used the Long Short-Term

Memory (LSTM) based cells that can handle the long term dependency and

resolve gradient disappearing problem (Hochreiter & Schmidhuber, 1997)

(Luong & Manning, Achieving open vocabulary neural machine translation

with hybrid word-character models, 2016). The other used approach is the at-

tention-based model, which adds direct connection between source and target

words. Furthermore, this tensor flow NMT model can handle the out of vocab-

ulary (OOV) words by applying sub-word (Sennrich, Haddow, & Birch, 2015)

and Byte Pair Encoding (BPE) (Kirchhoff, 2018) technique to it, which is a

powerful feature of this model.

Here, it is important to mention that we are using sentence level trans-

literation to transliterate the sentence based on its context. For example

 – (آم) common can be written as “aam” whereas same word is used for/)عام)

mango. Therefore, context awareness is required before transliteration. Length

penalty affects the NMT model therefore we used an attention-based model

that doesn’t attempt to encode the whole input sequence in one go. On the other

IJSER

3

hand, it chooses the set of input vectors that are relevant for transliteration with

the help of context vector. Therefore, longer length sentences don’t affect the

model performance (Bahdanau, Cho, & Bengio, Neural machine translation by

jointly learning to align and translate., 2015). Here we are using attention-

based models with LSTM cells, hence it can handle long term dependencies

issues (Hochreiter & Schmidhuber, 1997). Lastly for unknown words, it gen-

erates the relevant subwords based on the context of previous words. Another

important reason for selecting this sentence level transliteration is that it can

handle word alignment issues (Bahdanau, Cho, & Bengio, Neural machine

translation by jointly learning to align and translate., 2015). For example, Is-

lamabad is one word in Roman-Urdu whereas in Urdu آباد اسالم are two words.

It can handle these words in an efficient way. In absence of an automated pro-

cess for Urdu to Roman-Urdu transliteration, this research has high importance

to generate Roman-Urdu among multilingual sites due to following factors. A

medium is required for written communication between Urdu and Hindi speak-

ers, as both the languages are almost same but different scripts. Latin script

has more preference and is widely used in social media conversations like Fa-

cebook, Twitter, etc., among the speakers of the world. This work includes the

development of an open source parallel-corpora for Urdu to Roman-Urdu with

extensive data cleaning, which can be seen in Section 3.2. NMT and attention-

based models are discussed in Section 3, which is used for the first time to

transliterate from Urdu to Roman-Urdu. Out of vocabulary (OOV) words are

handled smartly as can be seen in Section 3.6. Extensive hyper-parameter tun-

ing is performed to achieve state of the art results, claimed in Section 4 and it

includes the result and conclusion part as well.

1 Tensor flow official code https://github.com/tensorflow/nmt

IJSER

4

CHAPTER 2

2. MOTIVATION AND RELATED WORK

Urdu is a morphologically rich language, derived mainly from Persian

and Arabic. Urdu speaking users do not differentiate between multiple letters

of Urdu i.e. ‘ع’ AIn and ‘ا’ alif in transliteration due to same pronunciation of

these letters in words (Akram & Hussain, Improving Urdu Recognition Using

Character-Based Artistic Features of Nastalique Calligraphy, 2019), therefore

Soundex algorithm can be used to handle these cases (Rajkovic & Jankovic,

2007). Another approach is Nastaliq2 which is used in OCR for features recog-

nition. In this approach, characters are replaced with RASM classes3 that are

used for sequence character recognition (Akram, Naseer, & Hussain, Assas-

Band, an affix exception-list based Urdu stemmer, 2009). Some researchers

used POS tagging and stemming approaches for language transliteration, but

POS tagging doesn’t differentiate well when we have more than one class

(Abbas, 2014). Statistical Machine Translation (SMT) model is another ap-

proach used for transliteration, but it doesn’t provide a track of missing words

and doesn’t support word alignment in different languages (Brown, Pietra,

Pietra, & Mercer, 1993). However, these issues are partially solved using nor-

malized-attention probabilities over the entire sentence to calculate the SMT

reordering score. Brahmi-Net is an online platform that provides transliteration

of Indian languages pairs including Urdu (Kunchukuttan, Puduppully, &

Bhattacharyya, Brahmi-Net: A transliteration and script conversion system for

languages of the Indian subcontinent, 2015). They used language scripts

IJSER

5

(Unicode scripts) and ITRANS for language translation/transliteration at word

level. SMT based models are passed to 13 languages and results are evaluated

using accuracy metric. IJunoon is another site that is using a rule-based ap-

proach for language transliteration.

On the contrary, Neural Networks are widely used for language trans-

literation due to its diverse set of applications. Neural Machine Translation

(NMT) uses LSTM based cells to avoid gradient disappearing issue

(Kalchbrenner & Blunsom, 2013). The model is plotted to vector illustration

using Word2Vec Toolset (Mikolov, Chen, Corrado, & Dean, 2013). This tech-

nique is applied to transform Roman-Urdu to Urdu transliteration using Recur-

rent Neural Network (RNN), which is related to our work (Alam & Hussain,

2017). Some researchers used this technique for Hindi transliteration, which is

similar to Urdu Language. A variety of techniques have been used for un-

known words handling (Kirchhoff, 2018). Some of those techniques include

Word Penalty (WP) and another one is Continuous Space Language Model

(CSLM) (Schwenk, 2007). In addition, NMT requires a huge amount of time

for training and testing, especially when dealing with rare words. Therefore,

Google Neural Machine Translation Model (GNMT) can be used to handle

those issues (Wu, 2016). It directly connects the bottom layer of the decoder

with the top layer of the encoder network to enable parallelism. They used low

precision arithmetic for faster computation during the inference stage. With

the help of subword units, they establish a good connection between characters

and words during the decoding phase. GNMT uses residual connection which

improves the gradient flow and allows training deep encoder and decoder net-

works. Another paper used an attention-based model for English to Persian

translation (Mahsuli & Safabakhsh, 2017). They used the encoder vectors as

initial weights. Similarly, the same attention-based model is used to translate

English to German (Luong & Manning, Stanford neural machine translation

systems for spoken language domains, 2015).

The NMT model can be trained using word level and character level

approach. The author uses the NMT character level approach (bi-directional)

for different languages during transliteration (Bahdanau, Cho, & Bengio,

IJSER

6

Neural machine translation by jointly learning to align and translate, 2014).

Some researchers used Bi-LSTM models with word and phrase-based models

. In the NMT (Sennrich, Haddow, & Birch, 2015) model, one to many align-

ments can exist which can be handled by using Bi-directional Joint Model

(BJM) (Yao & Huang, 2016). Now a days, multilingual networks are also used

for better results. This paper consisted of a multilingual and bilingual compar-

ison of model performance (Kunchukuttan, Khapra, Singh, & Bhattacharyya,

2018). Orthographically similar languages are passed as input and then identi-

fied the common features for language transliteration. Moreover, zero shot

transliteration (unknown words handling) outperform the bilingual model be-

cause the model generalized well on unknown words.

Another popular approach is segmentation approach for unknown words like

out of vocabulary. For each out of vocabulary word, average fact wise evi-

dence (PMI) is conceded with the surrounding material from the sentence.

Other used approaches are graph based re-ranking model (Kirchhoff, 2018)

and document context level model (DCLM) (Ji, Cohn, Kong, Dyer, &

Eisenstein, 2015), which were tested on different with English language. Con-

tinuous Bag of Words (CBOW) and Skip Gram models can also be used for

unknown words (Mikolov, Chen, Corrado, & Dean, 2013). Hybrid model is

another approach for unknown words, and it uses word and character level

embeddings to handle rare words (Wang Ling, 2015). Beam search is a com-

monly used technique to address penalty coverage issues in language genera-

tion tasks. It encourages the generation of output sentences that are likely to

cover all words in the source sentences.

Hybrid-based approaches play a significant role in handling complex

languages, and they have shown promising results compared to single network

models. In these approaches, Urdu is first taken as input and converted into a

Finite State Model (FSM) to handle diacritics (Malik, Boitet, & Bhattcharyya,

2008). Another technique is the Sequential RNN (SRNN) model, which com-

bines a Feedforward Neural Network (FNN) with an RNN (Oualil & Klakow.,

2017) and aspect-based Opinion Target Expression (OTE) that is used to iden-

tify the polarity of the embedding words. Neural networks are being used in a

IJSER

7

variety of applications like video semantics understanding (Pan, 2016), mal-

ware detection (Stokes & W., 2017) and language translation.

Sequence to sequence models is widely used for rich source languages

i.e. English, Dutch, Chinese and its results are phenomenal. Therefore, this

approach is also used for some low resource languages i.e. Hindi, Arabic

(Malik A. , 2009) etc. The rule based/dictionary-based mapping only works

well for seen dataset but can’t handle the composite and unseen/rare words

(Ahmed, 2009). The results of the rule-based approach are discussed in “Re-

sults section” where we can see that model performance is not so good for rare

and unknown words. To the best of our knowledge till date there is no signifi-

cant work done to apply sequence to sequence model for Urdu to Roman-Urdu

transliteration (Alam & Hussain, 2017). Therefore, sequence to sequence and

attention based models applied on Urdu language which addresses the issues

of data variations, long term dependencies, gradient vanishing, and OOV

words in an efficient way (Luong & Manning, Stanford neural machine

translation systems for spoken language domains, 2015). It can also handle

unknown/rare words using BPE and sub word approaches. Shortly, NMT

model has the dominance over SMT and rule-based methods, which is not only

providing scalable, context aware, and dynamic models but also widely being

used in language translation due to its features.

2 Nastaliq is the calligraphy for Arabic scripts which describes the shapes of character and

joiners of Urdu language based on position.
3 RASM classes are sequences of character classes and it contains dimensional features infor-

mation.

IJSER

8

CHAPTER 3

3. METHODOLOGY

In our proposed work, the idea of Neural Machine Translation (NMT)

has been adopted for transliteration purpose, hence renamed with Neural Ma-

chine Transliteration (NMT) in our work and should be considered like this in

sections ahead. Our NMT is enhanced with an attention-based model discussed

in Section 3.1 next. The raw corpora collected for Urdu and Roman-Urdu de-

tailed in Section 3.2, are used for training of this NMT model, which provides

Figure 3.1 Sequence to Sequence NMT architecture

IJSER

9

us separate embeddings (vectors) for Urdu and Roman-Urdu corpora. Next,

we performed projections for the two embeddings corpora using a translitera-

tion matrix commonly known as transformation or 2D alignment matrix as

shown in figure 3.1. This transliteration matrix gives us the estimates of the

expected locations of matching transliterations for words in Urdu corpus to

Roman-Urdu corpus.

In NMT, we used the sequence-to-sequence model that uses encoder-

decoder architecture for model's training as shown in Figure 3.1. The input se-

quence is passed as input and first it tokenizes it into words and then it gener-

ates one hot encoding vector, i.e. [1, 0, 0, 0] vector for the word 'yeh' in Figure

3.2 (Bahdanau, Cho, & Bengio, Neural machine translation by jointly learning

to align and translate, 2014). Next in the embedding layer, vocabulary is at-

tached for verification of the input sequence and it acts like a lookup table.

Embedding weights are randomly initialized in the range (-1, 1) at start for

input as can be seen in 4x4 matrix and the resultant weights are passed to hid-

den layers, which generate vectors using word2vec models' approach that can

be seen in (Liu, 2017). At each timestamp, the model reads the input sequence

from the corpus until it finds the EOS (End of Sentence). Now the decoder

reads those vector weights of the encoder and passes it as input for translitera-

tion. First it generates the word embedding with the help of target vocabulary

and then this information is passed to the next hidden layer with encoder

weights. The decoder vector is passed to a 2D alignment matrix which identi-

fies the word alignments of source and target words and generates output. Then

the output layer is passed to a softmax layer that uses conditional probability

to compute the target sentence using Equation 3.1. The equation shows the

computation of target word y, it checks the input word with all previously pre-

dicted targets and applies argmax on target vector.

P(y|x) = P(y1|x)P(y2|x,y1)P(y3|x,y1,y2) …….P(yn|y1,y2 …. yn-1x) (3.1)

4 The NMT model architecture is taken from tensor flow official

IJSER

10

In the next step, the predicted word is passed as input and this process keeps

going for the decoder sequence. The encoder decoder training example is

shown in Figure 3.2 that illustrates the working. The above Figure 3.2 shows

that input is converted into one hot encoding vector. Here the input length is 4

therefore 1x4 vector is generated which is multiplied by random weights [-1,

1] at start based on embedding layers size. In this example we used the 4 em-

bedding layers and this 4x4 embedding matrix is multiplied with input vector

and embedding weights generated of size 1x4. Here the horizontal vector is

used which has 4 dimensions in the above example. Next, these embedding

weights passed to a hidden layer where we took the dot product with weight

vector W2 of size 4x4 and encoding vector of size 1x4 is generated. At this

stage input is completely converted to index form. Now in the next decoder

phase, we generated one hot encoding of the target sequence and after taking

the dot product with embedding weights of size 4x4, the decoder vector is gen-

erated as shown in Figure 3.2. These encoder and decoder vectors are then

passed to a 2D alignment matrix where it finds the word alignments between

source and target vectors as shown in Figure 3. Finally, the result is passed to

the softmax layer, which generates the final output.

Learning rate is an important hyper parameter that controls how much

to change in response of estimated error reported during training. The learning

rate is updated based on perplexity stats of the model. For each source se-

quence f = f
j there is a target sequence f = e

j
. We want to minimize the

Figure 3.2 Encoder Decoder Example

IJSER

11

𝑠=1 𝑖=1

𝑖 <𝑖

𝑠=1

negative log-likelihood or the cross entropy of input sequences {< f(s), e(s) >}s

and its objective function is given below

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐽(𝜃) = ∑𝑆 ∑𝑚𝑖 − log 𝑝 (𝑒𝑠| 𝑒(𝑠); 𝜃) (3.2)

The equation 3.2 states that for each distinct target sentence y (1) … y

(n) with the sentence length m1 … mS we can compute the loss during training.

At the start we used some initial learning rate and during model training,

weights are updated in the opposite direction of gradient to minimize the loss.

The computation cost is reduced by mini batches of size 128.To find the cor-

respondence between source and target words, a 2D alignment vector is cre-

ated that identifies the correspondence between encoder and decoder vectors.

The correspondence can be one to one, one-to- many, many-to-one and many-

to-many. In Figure 3.3, all these word vectors are placed in a dense matrix,

which returns a single vector of size V where V is the vocabulary size of target

sentence length. For each step, it computes the distance between these vectors

based on selected context size. Next, our objective is to figure out the target

vector, which has the highest similarity to the source vector. Here in Figure

3.3 we can see the dark cells correspond to the highest similarity between

source and target words whereas light grey and while cells show the low sim-

ilarity among them. The example shows that آباد اسالم (2 words) are mapping to

a single word in Roman-Urdu so it can handle one-to-many and many-to-many

alignments without any issues. Cosine similarity is used to determine the sim-

ilarity between source and target words. It simply computes the distance

Figure 3.3 Word alignment between sentences from the source and the desti-

nation using a two-dimensional alignment matrix.

IJSER

12

between source and target vectors and finds the neighbors based on similarity

check. The process continues until it reaches the end of the sentence. The co-

sine similarity of two vectors can be computed with the help of following

Equation 3.3. This equation shows that by taking the dot product of two vectors

will show the similarity among them and then norm is taken to normalize the

results. The main problem of this seq-to-seq model is that we need to track the

long-term dependencies to transliterate the language model.

 (3.3)

The decoder uses the whole last source state as input before starting the decod-

ing process. For each step “t” we need to track the Vt combinations, therefore,

the complexity of the model is O (VT) where V is the vocabulary size of the

source input sentence and T is the overall number of steps.

Figure 3.4 Example of Attention based architecture of NMT

IJSER

13

3.1 Attention Based Model

As discussed in the above section in the sequence-to-sequence model,

we need to track down all the possible combinations for final output, which is

computationally expensive for long sentences. The last state of the encoder

needs to store all the information of the source before decoding starts. Attention

based models resolve these issues of sequence-to-sequence model by adding a

straight connection between source and target language. It pays consideration

to the relevant context vector, which needs to be transliterated. The attention-

based architecture is shown in Figure 3.4. Here, we can see that Input is passed

to the embedding layer and then attention weights are computed. In the next

step, the weighted average of source states are combined and a context vector

is created which is then combined with the current target state to generate the

attention vector. Attention vector is then passed to previously discussed align-

ment matrix and softmax function is applied to get the final output. Luong

(Luong, Pham, & Manning, 2015) proposes the multiplicative (where source

and target vectors are multiplied with weights) whereas Bahdanau (Bahdanau,

Cho, & Bengio, Neural machine translation by jointly learning to align and

translate, 2014) proposes the additive style (where source and target vectors

are added after multiplying with weights) for score finding of attention weights

as shown in Equation 4. Here, hs and ht are source and target hidden states and

tanh function is applied for normalization purposes. In Equation 3.5, each

score of source to target is computed using exponent and then divided (for

normalization purpose) with the sum of exponent scores of all the sources. In

this way, the attention weights ats are computed. Next, the product of attention

weight ats and source hidden state hs are computed for all the source states and

then summed up to achieve the context vector ct as shown in equation 3.6.

Finally, the target weights wt, context vector ct with decoder hidden state hs is

passed to a function tanh (input), which generates the final target attention vec-

tor at according to Equation 3.7. The attention output mostly gets information

from such a hidden state, which has the high attention. This process continues

until the end of sentence.

IJSER

14

 ℎ𝑡 𝑊ℎ𝑠 𝐿𝑢𝑜𝑛𝑔′𝑠 (3.4)

𝑠𝑐𝑜𝑟𝑒 (ℎt, ℎs) = v𝑎 𝑡𝑎𝑛ℎ (𝑊1 ℎ𝑡 + 𝑊2 ℎ𝑠) 𝐵𝑎ℎ𝑑𝑎𝑛𝑎𝑢′𝑠

 𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒 (ℎ𝑡, ℎ𝑠))
(3.5)

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑎𝑡𝑠 = s=1∑𝑁 𝑒𝑥𝑝 (𝑠𝑐𝑜𝑟𝑒 (ℎ, ℎ))

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑐𝑡 = ∑s 𝑎𝑡𝑠 ℎ𝑠 (3.6)

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑎𝑡 = 𝑓 (𝑐𝑡, ℎ𝑡) = 𝑡𝑎𝑛ℎ (𝑊c [𝑐𝑡; ℎ𝑠]) (3.7)

We used the LSTM for both encoder and decoder unit cells which can handle

the long-term dependencies in an efficient way (Park, Song, & Kim., 2018).

Both Luong and Bahdanau methods that are discussed in (Luong, Pham, &

Manning, 2015) & (Bahdanau, Cho, & Bengio, Neural machine translation by

jointly learning to align and translate, 2014) are applied to validate the model

performance. Sequence-to-sequence model uses a forward feed method by de-

fault to predict the target but in some cases feedforward information is not

enough, therefore, We also used a bi-directional model, which makes superior

predictions by taking into account both the subsequent layer and the previously

unseen data.

3.2 Data Gathering

To perform language transliteration, data is gathered from multiple re-

sources using scraping packages (scrapy5). The important challenge of crawl-

ing sites is to find relevant sources, which can provide us with a parallel corpus

of Urdu and Roman-Urdu as well6. Following are the sources used for collec-

tion of corpora.

In Table 3.1, we can see the Roman-Urdu has more vocabulary as compared

to Urdu and it is due to the data variation issue.

5
Scrapy is an open source framework that is used to scrape the data from websites

https://scrapy.org/
6 Parallel corpus https://github.com/wajahatuk/ru_u_corpus

https://scrapy.org/
https://github.com/ahmedsharif/roman_urdu_to_urdu_corpus

IJSER

15

For example, معافی 'forgiveness' can be written as maafi, mafi, muafi, maafy,

etc., and all these versions can exist in Roman-Urdu but not in Urdu. The da-

taset is divided into training, holdout and testing sets. We used 75% of sen-

tences as training, 10% for holdout and remaining 15% is used as a test set.

The vocabulary is generated with the help of a training set after applying to-

kenization on it. This whole dataset is passed to the data-cleaning phase that is

discussed in Section 4.

Table 3.1 Data Feed Information

Source Number of

Sentences

Vocab

Urdu

Vocab Roman-

Urdu

https://jang.com.pk/roman 45,000 26,000 43,000

https://ythisnews.com/ 17,000 9,800 7,859

 Total 62,000 35,800 50,859

https://jang.com.pk/roman
https://ythisnews.com/

IJSER

16

CHAPTER 4

4. IMPLEMENTATION AND ISSUES

4.1 Data Cleaning

Data cleaning operations performed to make our corpus able for train-

ing on neural machine transliteration (NMT) are as follows:

Case Sensitive issue: NMT doesn’t handle case-sensitive issues and mark the

same word as <UNK>. Therefore, we need to apply transformation on Roman-

Urdu dataset, which is applied by converting uppercase to lowercase. For ex-

ample Islamabad vs islamabad should belong to the same word embedding in

Roman- Urdu.

Deletion of special characters: Through data scraping, some special characters

were present which needed to be deleted. These symbols include characters

like $, %, #, (), @, & exist which require proper handling. Moreover, there

were some encoding issues due to other languages i.e. Arabic or Persian appear

in Urdu script.

Data abbreviations handling: Roman-Urdu is a slang language and can have

abbreviations in sentences that need proper handling. This issue is handled

smartly as acronyms normally appear in capital case; therefore these words are

stored in our vocabulary. Some of the acronyms are PTI (Political Party),

PMLN (Political Party), ISBP (Army Department), SBP (State Bank of Paki-

stan) etc.

IJSER

17

Splitting sentence issues: In Roman-Urdu, some words and abbreviations nor-

mally end with period ‘.’ i.e. Dr., Prof etc. Sentence separation of Roman-Urdu

is mostly with period but there are numeric cases like 14.3, which need to be

addressed. These cases are handled manually.

4.2 Unknow Words Handling

NMT model performs well as compared to conventional and phrase

level models but it takes more computational time for training. Secondly, NMT

model performance is not so good for rare/unknown words and it is a challeng-

ing task. Therefore, an algorithmic-based approach (sub word) is used in our

model. The sub word is a method that performs breakdown on available vo-

cabulary and tries to understand the words. It is the same as using character

level embedding for rare words. It is similar as Byte Pair Encoding (BPE) but

it creates new subwords by likelihood not by highest frequency pair. For ex-

ample سربراہ-sarbrah is treated as

 .at, etc– ات ilzam and– الزام ilzamaat as الزامات ,brah- براہ sar, and - سر

The alternative method in use is called Byte Pair Encoding (Sennrich, Haddow,

& Birch, 2015), which improves breakdown uniformity and lessens the issue

of adding or removing characters during transliteration. It uses the vocabulary

threshold so that the script only uses the character embedding for rare or un-

known words. Its algorithm is as follows:

ALGORITHM 1: Byte Pair Encoding Algorithm:

a. Select the desired sub-word vocabulary size.

b. Split the word into sequences of characters and append suffix </w> (end of

word) with word frequency.

c. Generate the new sub-word to the high frequency occurrences.

d. Repeat step 3 until reaching the target vocab size defined in step 1 or next

highest frequency pair 1.

For example شہری 'Sehri/Citizen’, شعبہ 'Shobah/Department', 'متعلق ‘Mutal-

liq/about’, یجعل Jaali/fake’ have highest frequency pairs as شع، ‘Sha’, تع ‘Ta’

and in next iteration it will calculate the target word by adding these vocab as

IJSER

18

well.

4.3 Urdu And Roman-Urdu Related Issues

Urdu language has rich morphological structure and due to that same

word can appear in different ways. Roman Urdu, lacks any patterns and is a

slang language. Data variation is the challenging task because Roman Urdu

has multiple versions of the same word that exist i.e. words like raha, rha,

raahaa belong to the single Urdu word رہا. These words vectors have high sim-

ilarity to each other and we need to filter the correct pair among those cases.

Secondly, one-to-many and many-to-one word alignment exists for Urdu to

Roman-Urdu transliteration, which 2D alignment matrix caters i.e. PTI will

map to 3 words (ٰ یپ یآ ٹ ٰی (in Urdu. Realignment of sentences is not a big

deal for NMT models. Thirdly, Urdu is one of the low resource languages and

its parallel corpus is not available. Another issue we faced during data cleaning

was the text delimiter issue for both Urdu and Roman-Urdu. Urdu sentences

mostly end with dash (-) but it can be appeared to combine sentences. Simi-

larly, for Roman-Urdu dot (.) can be appeared for abbreviations like P.T.I, Dr.

Prof. and also for numeric values 23.5 which requires proper handling. Under-

standing context is very important for meaningful transliteration. NMT pre-

dicts the correct word based on the alignment vector which adds significant

improvement in the model accuracy. For example, if the rare words are passed

as input then it first maps it to the nearest matched word (using sub word and

other techniques) based on word alignment and returns correct results.

4.4 Rule Based Approach For Urdu To Roman-Urdu Transliteration

Urdu is one of the languages that has a rich morphological structure.

Therefore, no exact one to one mapping exists between Urdu and Roman-Urdu

language vocabulary, especially for vowel cases it’s much more complicated.

For this rule based approach, a data dictionary (character level) is created with

the help of Unicode characters of both languages. The dataset details are shared

in table Table 3.1 where we also added special characters to improve the

IJSER

19

results. Most common Roman-Urdu mapping issues are diacritic handling,

vowels and consonant (i.e. Y can be treated as a vowel as well as consonant

based on case) handling, different versions of the same word in Roman-Urdu

(i.e. raha, rahha, rha etc) and double roman letter (germination) (Ahmed,

2009). Here we used the simple approach to perform transliteration using that

dictionary mapping. Same dataset is passed to a rule based approach without

applying any filters. The data also contains abbreviations, complex and rare

words as well. Finally, results are evaluated using word and character level

BLEU score between predicted vs reference words.

IJSER

20

CHAPTER 5

5. EXPERIMENTS & RESULTS

Rigorous testing performed for hyper parameters tuning. We used

Google Colab TPU’s for model training. The dataset is separated into three

sections, training, holdout and testing dataset. In our experiment, 75% dataset

used for training, 10% for holdout and residual 15% used as test dataset. This

holdout dataset helped us to estimate the performance of the final model.

Following model settings are selected after doing thorough testing:

• There is no fixed length of sentences used. Input and target sequence

length is not the same in most of the cases.

• For each layer 128 LSTM cells used for the model.

• Context window is selected as 5, which means it checks 2 words from

left and 2 words from right of the current word while doing translitera-

tion.

• Step sizes are selected in the range of 12k-30k (~12- 30 Epoch) after

performing extensive testing. We used the learning decay rate that de-

creases the learning rate after every 1000 steps. The initial value of

learning rate is 1.0 for SGD and 0.001 for Adam optimizer.

• Number of unseen layers is nominated as 2 for encoder and decoder.

• Adam7 and Stochastic Gradient Descent (SGD)8 optimizers have been

used for the model training.

• Results are evaluated by using Bi-lingual Evaluation Understudy

(BLEU). We used the sentence level BLEU score to evaluate the

IJSER

21

transliteration results which uses cumulative n-gram models (unigram,

bigram, trigram and 4-gram). We assigned equal weights to these n-

gram models and it passed as a tuple. i.e. 1-gram (1, 0, 0, 0), 2-gram

(0.5, 0.5, 0, 0), 3-gram (0.33, 0.33, 0.33, 0) and 4-gram (0.25, 0.25,

0.25, 0.25) sentence_bleu (reference, candidate, weights = (0.25, 0.25,

0.25, 0.25))

• Initially for the training model, weights are assigned between [-0.1,

0.1] range. Weights are uniformly assigned to both encoder and at de-

coder level we are using encoder output as weights.

Embedding size of 512 is selected which gives good results. This value was

selected after extensive testing. The model takes around 2-3 days for model

training with Google GPU’s.

5.1 Quantitative

The results are evaluated using BLEU score on training and testing da-

taset. The configuration details for BLEU are shared in the above paragraph.

We used the preexisting rule based approach that is discussed in section 4.4

(Ahmed, 2009). It uses one to one mapping for transliteration. Mapping dic-

tionary is passed as vocabulary and based on it, we achieved the BLEU score

of 27.18% at character level transliteration. The performance is low because

there are cases where we have vowels, germination, diacritics, Roman-Urdu

dataset variation issues and it requires complex rules to handle those cases.

From test results we observed that there is a high percentage of cases where

diacritics and vowel words caused low match rate. We haven’t applied com-

plex rules in our approach. Second rule based approach doesn’t generate con-

text aware results that’s why this mapping generated wrong results in some

cases. Thirdly, it can’t handle the abbreviated words i.e. PTI, ISBR, WHO etc.

7 Adam is an optimizer which updates network weights using an iterative approach. It’s also

called an adaptive learning approach.
8 Stochastic Gradient Descent is also an optimizer that keeps the same learning rate during

training.

IJSER

22

Word alignment (1 to many) is another issue affecting the results. Here BLEU

score evaluates the correspondence of predicted and target words by counting

the number of matches.

Table 5.1 Rule Based Approach Results

 System Test BLEU Score %

 Unicode mapping using character level approach 27.3%

 IJunoon (Roman-Urdu to Urdu Results)9 86%

 Brahmi-Net REST API10 29.87%

5.1.1 Comparison of Ijunoon Results

There is no doubt that the IJunoon rule based approach handles a lot of

cases. Therefore in order to compare and evaluate the model performance, we

ran our test dataset on the IJunoon approach and figured out some cases where

it’s not working well. First case is that it cannot handle complex words and

return the same input for those cases. Secondly, in Urdu language, some words

can be written in compound format (7th column word) and it didn’t generate

the transliteration for those words. Thirdly as they are using word level ap-

proach, therefore their approach is unable to transliterate those words. Also ac-

ronym handling and compound words (i.e. مارہلا مرمح) is not available in this ap-

proach. We also observed that in some cases its handling compound words (i.e.

Islamabad) but when we run it on our corpora, we figure out a lot of cases

where the model is not performing well. Some of those cases are also shared

below Table 5.2.

Table 5.2 IJunoon Results

Input

(Ur)

ٹفاڈر

گن

سمبھاے

 ل

ںویامنہر نمارپ یرداقلارہاط ردعمل دراکیر

گن

حرم الحرامم

Output

(RU)

ارڈ

نٹف

 گ

اھبسم

 ےل

یامنہر

 ںو

pur

aman

ردعم

 ل

دالقاراہط

 یر

دراکیر

 گن

Mehram

alhram

IJSER

23

5.1.2 Comparison of Brahmi-Net Approach

In the next step, we compared the results of the Brahmi-Net approach

discussed in paper (Kunchukuttan, 2015). The results are evaluated on our test

dataset. The test sentences are passed to API and results are compared with the

original dataset. From the test results, we achieved a BLEU score of 29.87%

which is not really good. After further analysis we figure out the reason for the

low results. First reason is that this approach is not handling diacritics and vow-

els, hence, even for common Urdu words, it generates wrong transliteration.

The wrong transliteration results are showing below. The vowels handling is

mandatory to achieve good results because same letter (Alif ا) can be mapped

to different roman-urdu letters (i.e. A, I). As we are using the same test dataset

for model evaluation, we figure out compound words are not handled in this

approach. Whereas our neural network approach is able to perform translitera-

tion based on context and can handle word alignment without any issues like

in Table 5.3.

Table 5.3 Brahmi-Net Results

Input
(ur)

 مر ممکن بعد

 ض
 ہوں ےس

 گ
 صحا

 ف
 وکال اضافہ نیرت

Out-
put(ru
)

Bed mum
con

marj
i

Tse Hon
ts

igm shap
hy

train ajao
phy

Okla

5.1.3 Comparison of Nmt Model

On the other hand, Table 5.4 is showing the sequence to sequence

model results. Because Vanilla RNN uses greedy approach and takes more

time on long sequences, therefore, this model is applied on small chunks. Table

statistics show poor performance of the NMT model because we chose a small

chunk for training purposes to reduce time. Second, we passed long sentences

with a sentence length of 65 words so the model performance remained poor

due to issue of long-term dependencies as can be seen through the low scores.

 9 https://www.ijunoon.com/transliteration/urdu-to-roman

 10 https://www.cfilt.iitb.ac.in/brahminet/

http://www.ijunoon.com/transliteration/urdu-to-roman
http://www.cfilt.iitb.ac.in/brahminet/

IJSER

24

Table 5.4 Squence to Sequence RNN Results

Model Name Scoring

Function

Epoch Train

BLEU

(%)

Test

BLEU

(%)

Vanilla RNN Single NMT 18 4.1 0.8

Forward Scaled Luong

Model Epoch 18

Scaled Luong 18 36.8 36.8

Forward Scaled Luong

Model Epoch 24

Scaled Luong 24 37.8 37.8

Forward Scaled Bahdanau

18 Epoch

Scaled norm

Bahdanau

18 31.2 42.8

Bi-direction normed Bah-

danau Epoch 20

Normed Bah-

danau

20 49.3 72.1

Attention Based Model

(Word level)

BPE 30 53.5 31.3

Attention Based Model on

Unseen data (Character

Level)

Attention

based (BPE)

18 40 27.2

The attention based model results are also listed in the above table, which has

different scoring functions (Luong and Bhadanau) and Epoch. This attention

based model reduces model time and it can handle long sequences with the

help of LSTM cells. We tried different scoring functions (Bahdanau, Normed

Bahdanau, Luong, and Scaled Luong) for model training. The result shows that

after 18 -30 Epoch, model highest score is achieved on Bahdanau bi-direc-

tional model with epoch 20. The vocab size is fixed for all these attention-

based models.

Due to static vocabulary issues, some of the words are mapped with unknown

tokens. Therefore we picked a subset of unknown/rare words and applied sub-

word and BPE algorithms to it. It converts rare/unknown words to base words

IJSER

25

as stated in Table 5. Results are showing that the NMT model produces a test

score of 27.2 on unseen testing data, which is good performance on unseen

data. Figure 5.1 shows that only increasing the step size is not enough but a

proper hyper-parameter tuning is required to achieve a high performance. At

20 Epoch, we achieved a high BLEU score of 72.1. We can say that the pro-

posed attention based model performs well on Urdu text and it can handle un-

seen words.

Figure 5.1 Step Size vs BLEU Score

5.2 Qualitative

The results are evaluated using the BLEU score as shown in Table 5.4.

In this table we have added different cases of different sentence length, rare

words and unknown words. We can conclude these points as follows based on

transliteration results.

1. The model is able to transliterate most of the sentences using the NMT and

attention-based model. We achieved a BLEU score of 72.1 on test data,

which is promising yet.

2. As we are using RNN models, there is no restriction on source and target

sequence lengths. Generally, the length is not the similar for the source and the

target sentences.

3. Based on results we observed that the model can handle one-to-many

IJSER

26

alignments or vice versa cases without any issues. With the help of an attention

based model, we can handle these cases whereas a dictionary based/rule-based

approach can only handle the one-to-one cases. Some of the abbreviations

passed to the models are PTI (abbreviation for the name of political party), JIT

(abbreviation of a commission) etc.

4. Roman Urdu is a slang language and abbreviations may exist in dataset i.e.

PTI, NA, Dr, Prof, ISBR, etc. The model was trained on these abbreviations

and in test results; it not only maps words with correct abbreviation but also

provided satisfactory results. Existing techniques transliterate یآ words but our

model predicts words like this correctly as a single word as P T I three words

but our model predicts words like this correctly as a single word.

5. Some researchers have addressed coverage issues by restricting the se-

quence length. However, in our model, we evaluate the results on both static

and dynamic input lengths, including sentences with more than 50 words.

While increasing the length may result in longer computation times, our model

has no limitation on sentence length. This is possible due to the attention-based

model (LSTM), which effectively handles long-term dependencies without

any issues. We experimented with a maximum sentence length of 65 words

and observed good performance even on such lengthy sentences.

6. In our model, we observed that some erroneous words were predicted, as

shown in Table 6. These predicted erroneous words exhibit a close relationship

with the correct word, indicating the model's understanding of the context. Ad-

ditionally, to handle Out of Vocabulary (OOV) words, we applied word seg-

mentation (subword) and Byte Pair Encoding (BPE) techniques. This resulted

in a BLEU score of 27 on unseen data.

7. Given the rich morphology of Urdu, we made efforts to cover common mul-

tifaceted cases of transliteration from Urdu to Roman Urdu. It was observed

that the model predicts the most common words more precisely compared to

rare words.. For the rare words, we used subwords and BPE approaches. Some

of the less frequent words are نڈیسکاٹل Scotland, یتقرر ‘taqarruri/hiring’, احمقانہ

‘ehmaqana/foolish’, الزامات ‘ilzamaat/blame’ etc., are listed in Table 5.5.

IJSER

27

Table 5.5 Qualitative result set

 Test set Input (Urdu) Test set Output (Roman-Urdu)

 Imran Khan aaj Karachi mein ےگنیرک دتایق یک چرام ںیم یچارک آج ناخ نرامع
March ki qayadat karinge

 Tariq Fatimy ne ilzamaat ko be یاد ےد اررق داینب ےب وک تامزالا ےن یمطافرق اط
bunyaad qarar day diya

 Pakistan aur West Indies ke زاغآ اک ٹسیٹن ایمدر ےک ازدنا ٹسیر ووا ناتسکاپ
darmiyan test ka aaghaz

 Afghanistan mein Daish ka یاگ راام باسح لدبع یخش ہاربرس اک یشد یںمن اتسناغاف
sarbarah Sheikh Abdul hisaab
mara gaya

Erroneous Cases

 اک یفاعم ےس ناتسناغاف اک قحل و جراس ،لہمح نمچ

 ہبلامط

Chaman <unk> Siraj ul <unk>
ka Afghanistan se maffi ka mu-
talba

 ،ےہ ہناقمحا ششوک یک ےنوہ زادنا رثا رپ یٹ آئ ےج

 قیرف دعس

JIT par assar andaaz honay ki ko-

shish ehmaqana hai , Saad
Rafeeq

-Scotland yard ne Sarfaras Mer ید رک سپاو مرق وک ٹنچرم رازفرس ےن ڈرای ڈنیلٹاکس

chant ko raqam wapas kar di

 Los Angeles mein mazedar ice میزیوم خی اڈنھٹ انب ےس میرکس ا اردیمز یںم یسلگنا الس
kareem se bana thanda yakh mu-
seum

 راددل ریما اک یچراک یوگنھج رکشل ،یئروااک یک دتت

 یراھب ک،لاہ اچچ رفع

 دمرآب دورابو ا ہحلسا یںم رادقم

Ikhlaq ki nigaran, <unk> bhi-

karan Karachi ka Ameer <unk>
urf <unk> halaak , bhaari mi-
qdaar mein asleha o barood
baraamad

 مان اک نج ےگوہ ملاش گول ےسیا ضعب یںم یئآ یٹ یپ

 رمع دسا ،انس راب یلہپ

PTI mein baaz aisay log shaamil

hogaye jin ka naam pehli
baar suna , Asad umar

 نہت ایح ات مظعا ریوز، لہصیف یخیرات اک ٹروک میرپس

 رارق لہا

<unk> <unk> ka tareekhi

<unk> <unk> e Azam ta hayaat
<unk> ahal qarar

Longer Dependency Sentence

 یک ےنانب ہناشن وک یسولپ ےک ےہ اتوہم علوم اسیا رہابظ

 یئگ یک ششوک
Bazahir aisa maloom hota hai ke

police ko nishana bananay ki ko-

shish ki gayi

 اکنیرپ ڈلور قہباس روا راٹسا رپس یک یرٹسڈنا مفل یترھب

 وا رثکا یںہنا ،ینعم ہرگلاس نو 36 ینپا لک ےن ہڑپوچ

 یزایتما ےس ہجو یک تگنر ریہگ یپنا رتشیب

 ےہ اتڑپ انرک انماس اکک سلو

Bharti film industry ki super star

aur Sabiqa education world Pri-

yanka chopra ne kal apni 36 win

saalgirah manayi , inhen aksar o

beshtar apni gehri rangat ki

wajah se imtiazi sulooq

ka saamna karna parta hais

IJSER

28

CHAPTER 6

6. CONCLUSION AND FUTURE WORK

We transliterated from Urdu to Roman-Urdu using the NMT style,

which has been increasingly popular in recent years. The outcomes of the

existing models' usage of statistical and rule-based methods for transliterat-

ing Urdu are also good. This neural model is primarily used because it has a

dynamic design that produces rich, context-aware outputs and can manage

long-term dependencies while transliterating languages. A strong aspect of

this model is its ability to perform effectively on data that hasn't been seen

before. It also runs smoothly on languages with few resources. Finally, using

the training and testing datasets, we obtained BLEU scores of 52 and 72,

which adds a considerable improvement in the transliteration of Urdu into

Roman-Urdu. In future, we will use multi-lingual models (BERT) and trans-

formers (Multilingual and Bi- lingual) models to improve model perfor-

mance. These models perform training based on generic vocabulary of dif-

ferent languages and this generic model produces phenomenal results.

IJSER

29

REFERANCES

Abbas, Q. (2014). Semi-Semantic Part of Speech Annotation and Evaluation.

Proceedings of LAW VIII - The 8th Linguistic Annotation Workshop,

August 2014, pp. 75-81. Association for Computa-tional Linguistics

and Dublin City University, Dublin, Ireland.

Ahmed, T. (2009). Roman to Urdu transliteration using word list. Proceedings

of the Conference on Language and Technology, vol. 305, p. 309.

Akram, Q. U. A. and Hussain, S. (2019). Improving Urdu Recognition Using

Character-Based Artistic Features of Nastalique Calligraphy. IEEE

Access, 7, 8495-8507.

Ain, Naseer, A. and Hussain, S. (2009). Assas-Band, an affix-exception-list

based Urdu stemmer. Proceedings of the 7th Workshop on Asian

Language Resources (ALR7), pp. 40-47, Suntec, Singapore.

Alam, M. and Sibt ul Hussain (2017). Sequence to sequence networks for

Roman-Urdu to Urdu transliteration. Proceedings of International

Multi-topic Conference (INMIC), pp. 1-7.

Auli, M., Galley, M., Quirk, C. and Zweig, G. (2013). Joint Language and

Translation Modeling with Recurrent Neural Networks. Proceedings of

the 2013 Conference on Empirical Methods in Natural Language

Processing, pp. 1044-1054, Seattle, Washington, USA.

Bahdanau, D., Cho, K. and Bengio, Y. (2014). Neural Machine Translation by

Jointly Learning to Align and Translate. arXiv preprint,

arXiv:1409.0473

Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C. (2003). A neural

probabilistic language model. Advances in Neural Information

Processing Systems, 13.

IJSER

30

Brown, P. F., Pietra, V. J., Pietra, S. A. and Mercer, R. L. (1993). The

mathematics of statistical machine translation. Parameter estimation.

Computational Linguistics, Susan Armstrong (Ed.) In Using Large

Corpora,19, (pp. 223-224), London, England: MIT.

Cho, K., van Merrienboer, B., Bahdanau, D. and Bengio, Y. (2014). On the

Properties of Neural Machine Translation: Encoder–Decoder

Approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax,

Semantics and Structure in Statistical Translation, pp. 103-111, Doha,

Qatar.

Durrani, N., Sajjad, H., Fraser, A. and Schmid, H. (2010). Hindi-to-Urdu

Machine Translation through Transliteration. In Proceedings of the

48th Annual Meeting of the Association for Computational

Linguistics, pp. 465-474, Uppsala, Sweden.

Gupta, V., Joshi, N. and Mathur, I. (2013). Rule based stemmer in Urdu.

Proceedings of 2013 4th international conference on computer and

communication technology (ICCCT), pp. 129-132, IEEE.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), pp. 1735-1780.

Ji, Y., Cohn, T., Kong, L., Dyer, C. and Eisenstein, J. (2015). Document

Context Language Models. arXiv preprint, arXiv:1511.03962

Kalchbrenner, N. and Blunsom, P. (2013). Recurrent Continuous Translation

Models. Proceedings of the 2013 Conference on Empirical Methods in

Natural Language Processing, October, 2013, pp. 1700-1709, Seatle,

USA.

Khan, W., Daud, A., Khan, K., Nasir, J. A., Basheri, M., Aljohani, N. and

Alotaibi, F. S. (2019). Part of Speech Tagging in Urdu: Comparison of

Machine and Deep Learning Approaches. IEEE Access, 7, 38918-

38936. https://doi.org/10.1109/access.2019.2897327.

Liu, A. and Kirchhoff, K. (2018, January 25). Context Models for OOV Word

Translation in Low-Resource Languages. arXiv preprint,

arXiv:1801.08660

Kunchukuttan, A., Khapra, M., Singh, G. and Bhattacharyya, P. (2018).

Leveraging Orthographic Similarity for Multilingual Neural Transli-

teration. Transactions of the Association for Computational Linguis-

tics, 6, 303-316.

Kunchukuttan, A., Puduppully, R. and Bhattacharyya, P. (2015). Brahmi-Net:

A transliteration and script conversion system for languages of the

Indian subcontinent. In Proceedings of the 2015 Conference of the

North American Chapter of the Association for Computational

Linguistics: Demonstrations, pp. 81-85, Denver, Colorado.

IJSER

31

Kyunghyun, C., Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H. and

Bengio, Y. (2014). Learning Phrase Representations using RNN

Encoder–Decoder for Statistical Machine Translation. In Proceedings

of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pp. 1724-1734, Doha, Qatar.

Lagarda, A. L., Vicent Alabau, Casacuberta, F., Roberto Nascimento Silva,

and D’iaz-de-Liaño, E. (2009). Statistical post-editing of a rule-based

machine translation system. Proceedings of the 2009 Annual

Conference of the North American Chapter of the Association for

Computational Linguistics, Companion Volume: Short Papers, pp.

217-220, Seattle, USA.

Lemao, L., Finch, A., Utiyama, M. and Sumita, E. (2016). Agreement on tar-

get bidirectional lstms for sequence-to-sequence learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, 30(1).

https://doi.org/10.1609/aaai.v30i1.10327.

Liu, H. (2017). Sentiment analysis of citations using word2vec. arXiv preprint,

arXiv:1704.00177.

Luong, M. T., Pham, H. and Manning, C. D. (2015). Effective approaches to

attention-based neural machine translation. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing, pp.

1412-1421, Lisbon, Portugal.

Luong, M.-T. and Manning, C. D. (2015). Stanford neural machine translation

systems for spoken language domains. In Proceedings of the 12th

International Workshop on Spoken Language Translation: Evaluation

Campaign, pp. 76-79, Da Nang, Vietnam.

Luong, M.-T. and Manning, C. D. (2016). Achieving Open Vocabulary Neural

Machine Translation with Hybrid Word-Character Models.

Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics, vol 1, pp. 1054-1063, Berlin, Germany.

Mahsuli, M. M. and Safabakhsh, R. (2017). English to Persian transliteration

using attention-based approach in deep learning. Proceedings of 2017

Iranian Conference on Electrical Engineering (ICEE), pp. 174-178,

Yazd, Iran.

Malik, A. (2009). A hybrid model for Urdu Hindi transliteration.

Proceedings of 47th Annual Meeting of the Association of

Computational Linguistics and the 4th International Joint Conference

on Natural Language Processing of the Asian Federation of NLP

ACL/IJCNLP Workshop on Named Entities (NEWS-09), pp. 177-185,

Singapore.

IJSER

32

Malik, M. G., Boitet, C. and Bhattcharyya, P. (2008). Hindi Urdu Machine

Transliteration using Finite-state Transducers. In Proceedings of 22nd

International Conference on Computational Linguistics (COLING), pp

.537-544, Manchester, United Kingdom.

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013). Efficient Estimation

of Word Representations in Vector Space. arXiv preprint,

arXiv:1301.3781

Oualil, Y. and Klakow., D. (2017). A Neural Network approach for mixing la-

nguage models. Proceedings of 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 5710-5714,

New Orleans, USA.

Pan, e. a. (2016). Jointly modeling embedding and translation to bridge video

and language. Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 4594-4602, Las Vegas, USA.

Park, S., Song, J.-H. and Kim., Y. (2018). A Neural Language Model for

Multi-Dimensional Textual Data based on CNN-LSTM Network.

Proceedings of 19th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), pp. 212-217, Busan, South

Korea.

Rajkovic, P. and Jankovic, D. (2007). Adaptation and application of daitch-

mokotoff soundex algorithmon Serbian names. Proceedings of XVII

Conference on Applied Mathematics.

Saini, S. and Sahula, V. (2018, March). Neural Machine Translation for Eng-

lish to Hindi. Proceedings of 2018 Fourth International Conference on

Information Retrieval and Knowledge Management (CAMP), pp. 1-6,

Kota Kinabalu, Malaysia.

Schwenk, H. (2007). Continuous space language models. In Proceedings of

the COLING/ACL 2006 Main Conference Poster Sessions, pp. 723-

730, Sydney, Australia.

Sennrich, R., Haddow, B. and Birch, A. (2015). Neural Machine Translation

of Rare Words with Subword Units. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics vol. 1, pp.

1715-1725, Berlin, Germany.

Stokes, B. A. and W., J. (2017, March). Malware classification with LSTM

and GRU language models and a character-level CNN. Proceedings of

2017 IEEE international conference on acoustics, speech and signal

processing (ICASSP), pp. 2482-2486, New Orleans, USA.

IJSER

33

Wang Ling, e. a. (2015). Character-based neural machine translation. In

Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics, vol.2, pp. 357-361, Berlin, Germany.

Wu, Y. e. , Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W. and

Dean, J. (2016). Google's neural machine translation system: Bridging

the gap between human and machine translation. arXiv preprint,

arXiv:1609.08144.

Yao, Y., & Huang, Z. (2016). Bi-directional LSTM recurrent neural network

for Chinese word segmentation. Proceedings of Neural Information

Processing: 23rd International Conference, ICONIP 2016, pp. 345-

353, Kyoto, Japan.

IJSER

34

CURRICULUM VITAE

Wajahatullah Khan received his BS degree in Information and Communication

Systems. He has a lot of experience in various data roles, including Data En-

gineer, Database Developer, Data Analyst, and BI Engineer, spanning indus-

tries such as telecom, banking, R&D, e-commerce, digital marketing, and

online classifieds. Demonstrated experience in managing, architecting, and an-

alyzing big data to develop data-driven insights and high-impact data models

that drive business growth and innovation. Proficient in multiple cloud services

(AWS, GCP, Azure), with a primary focus on GCP, and hands-on experience

with cloud-native distributed systems and MPP databases. Designed and im-

plemented enterprise-level, petabyte-scalable data stacks using cloud-native

technologies such as AWS Redshift and Greenplum. Expert in SQL, Python,

Shell, and Java programming, specializing in data handling libraries. Familiar

with software development best practices, including CI/CD and Agile meth-

odologies.

